PLANT TISSUE CULTURE

Unit-I

Introduction - History, Scope and Concepts of basic techniques in plant tissue culture. Laboratory requirements and organisation. Sterilization-filter, heat and chemical. Media preparation - inorganic nutrients, organic supplements, carbon source, gelling agents, growth regulators and composition of important culture media (MS, Whites and Gamborg's media).

Unit-II

Cell, tissue and organ culture - Isolation of single cells, selection and types of cells, tissue explants and organs for culture - Paper, raft nurse technique, Plating method, Microchamber techniques, cell suspension cultures - batch, continuous, chemostat culture - Synchronization of suspension culture, cellular totipotency, Cytological, cytochemical and vascular differentiations - Totipotency of epidermal and crown - gall cells.

Unit-III

Micropropagation - Clonal propagation of elite germplasm, factors affecting morphogenesis and proliferation rate, technical problems in micropropagation.

Organogenesis - formation of shoots and roots - Role of growth regulators and other factors, somaclonal and gametoclonal variations.

Somatic embryogenesis - Process of somatic embryogenesis, structure, stages of embryo development, factors affecting embryogenesis, synthetic seeds.

Unit-IV

Haploid production - Androgenesis, gynogenesis - Techniques of anther culture - segmentation pattern in microspore - isolated pollen culture - plantlets from haploids - diploidisation - factors influencing androgenesis, haploidy through gynogenesis, haploid mutants, utilization of haploids in plant breeding.

In vitro pollination - ovule and ovary culture, importance, techniques overcoming incompatibility barriers, embryo rescue.

Protoplast culture: Isolation of protoplasts - mechanical and enzymatic sources, culture of protoplasts, viability. Protoplast fusion - Spontaneous, mechanical, induced electrofusion, selection of somatic hybrids, cybrids, importance.

Unit-V

In vitro production of secondary metabolities - Classification of secondary metabolites, biosynthetic pathways, cell suspension cultures, immobilized cell cultures and biotransformation, elicitors and hairy root culture.

Cryopreservation and gene bank - Modes of preservation, preparation of materials for deep freezing, cryopotectors, storage strategies, assessment of successful cryopreservation, application and limitations.

Application of tissue culture in forestry, horticulture, agriculture and pharmaceutical industry.

References

- Bhojwani, S. S. and Razdan, M. K. (1983). Plant Tissue Culture: Theory and Practice. Elsevier Science Publishers, Netherlands.
- Dodds, J. H. and Roberts, I. W. (1985). Experiments in Plant Tissue Culture. Cambridge University Press, UK.
- Fowler, M. W. (1986). Industrial Application of Plant Cell Culture. In: Yeoman, M. M. (ed.). Plant Cell Culture Technology. Blackwell, Oxford, London.
- Hammoond, J., McGarvey, P. and Yusibov, V. (2000). Plant Biotechnology. Springer Verlag, New York.
- Johri, B. M. (1982). Experimental Embryology of Vascular Plants. Narosha Publishing House, New Delhi.
- Kalyan Kumar, De. (1992). An Introduction to Plant Tissue Culture. New Central Book Agency, Calcutta.
- Ramawat, K. G. (2000). Plant Biotechnology. S. Chand & Co., New Delhi.
- Razdan, M. K. (2004). Introduction to Plant Tissue Culture. 2nd ed. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.
- Reinert, J. and Bajaj, Y. P. S. (1977). Plant Cell Tissue and Organ Culture: A Laboratory Manual, Narosa Publishing House, New Delhi.
- Vasil, I. K. (1986). Cell Culture and somatic Cell Genetics of Plants. 3 Volumes. Academic Press Inc.

Note: No Practical for this paper.