CORE COURSE XI - PHYSICAL METHODS IN CHEMISTRY - II

UNIT I

Electronic Spectroscopy

Microstates, terms and energy levels for $d^1 - d^9$ ions in cubic and square fields – Intensity of bands – group theoretical approach to selection rules - Effect of distortion and spin-orbit coupling on spectra – Evaluation of 10Dq and β for octahedral complexes of cobalt and nickel – applications to simple coordination compounds – charge transfer spectra – electronic spectra of [Ru(bipy)₃]²⁺.

Optical rotatory dispersion and circular dichroism and Magnetic circular dichroism – applications to metal complexes.

UNIT – II

Infrared and Raman Spectroscopy

Vibrations in simple molecules (H₂O, CO₂) and their symmetry notation for molecular vibrations – Group vibrations and the limitations- combined uses of IR and Raman Spectroscopy in the structural elucidation of simple molecules like N₂O, ClF₃, NO₃ -, ClO⁻₄ – effect of coordination on ligand vibrations – uses of groups vibrations in the structural elucidation of metal complexes of urea, thiourea, cyanide, thiocyanate, nitrate, sulphate and dimethyl sulfoxide – Effect of isotopic substitution on the vibrational spectra of molecules – vibrational spectra of metal carbonyls with reference to the nature of bonding, geometry and number of C-O stretching vibrations (group theoretical treatment) – Applications of Raman Spectroscopy – Resonance Raman Spectroscopy. Mass Spectrometry: Principles and presentation of spectra – molecular fragmentation – ion reactions – Inorganic applications.

UNIT – III

NMR Spectroscopy

Examples for different spin systems – chemical shifts and coupling constants (spin-spin coupling) involving different nuclei (¹H, ¹⁹F, ³¹P, ¹³C) interpretation and applications to inorganic compounds – Effect of quadrupolar nuclei (²H, ¹⁰B, ¹¹B) on the ¹H NMR spectra, Satellite spectra.

Systems with chemical exchange - evaluation of thermodynamic parameters in simple systems – study of fluxional behavior of molecules – an elementary treatment of second order spectra – examples – NMR of paramagnetic molecules – isotropic shifts contact and pseudo-contact interactions – Lanthanide shift reagents.

UNIT IV EPR spectroscopy

Theory of EPR spectroscopy - Spin densities and McConnell relationship – Factors affecting the magnitude of g and A tensors in metal species - Zero-field splitting and Kramers degeneracy – Spectra of VO(II), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) complexes – Applications of EPR to a few biological molecules containing Cu(II) and Fe(III) ions.

Magnetic properties:

Types of magnetism – Dia –para – ferro and antiferro magnetism. Magnetic properties of free ions – first order Zeeman effect – Second order Zeeman effect – states KT – states<<KT. Determination of Magnetic moments and their applications to the elucidation of structures of inorganic compounds – temperature independent paramagnetism. Magnetic properties of lanthanides and actinides. Spin crossover in coordination compounds.

UNIT V

Mossbauer Spectroscopy

Isomer shifts – Magnetic interactions – Mossbauer emission spectroscopy – applications to iron and tin compounds.

NQR spectroscopy

Characteristics of quadrupolar nucleus – effects of field gradient and magnetic field upon quadrupolar energy levels – NQR transitions – applications of NQR spectroscopy.

REFERENCES:

- 1. R.S. Drago, <u>Physical Methods in Inorganic Chemistry</u>, 3rd Ed., Wiley Eastern Company .
- 2. R.S.Drago, <u>Physical Methods in Chemistry</u>, W.B. Saunders Company, Philadelphia, London.
- 3. F.A. Cotton and G.Wilkinson, <u>Advanced Inorganic Chemistry</u>, 3rd ed., Wiley-Eastern Company, New Delhi 1990.
- 4. P.J. Wheatley, The Determination of Molecular Structure, .
- 5. Lewis and Wilkins, Modern Coordination Chemistry,.
- 6. E.A.V.Ebsworth, <u>Structural Methods in Inorganic Chemistry</u>, 3rd ed., ELBS, Great Britain, 1987.