

BHARATHIDASAN UNIVERSITY

TIRUCHIRAPPALLI – 620 024

M. Phil Classical and Molecular Taxonomy and Systematics (FT / PT) Programme

(For the candidates to be admitted from the academic year 2007-2008 onwards)

Semester I					
	Title of the Course	Marks			Credits
		IA	UE	Total	
Course –I	Research Methodology	25	75	100	4
Course – II	Classical Taxonomy and Systematics	25	75	100	4
Course- III	Molecular Taxonomy and Systematics	25	75	100	4
Semester II					
Course – IV	Elective - Biotechnology	25	75	100	4
	Dissertation and Viva-Voce Viva Voce 50 marks	200 (50+150)		8	
	Dissertation 150 marks				

QUESTION PAPER PATTERN (Paper I – IV)

- Part A: Two questions from each unit (without choice). Each question carries 2 marks. (10 x 2 = 20)
- Part B: One "EITHER OR" questions from each unit Each question carries 5 marks (5 x5 = 25).
- Part C: One question from each unit. Each question carries 10 marks. The candidate has to answer three questions out of the five questions ($3 \times 10 = 30$)

M. Phil Classical and Molecular Taxonomy and Systematics

SEMESTER I

COURSE I-RESEARCH METHODOLOGY

Objectives

To initiate the students into research activities and to learn to handle various instruments, their principles and applications.

Unit – I

Buffers: Characteristics and preparation. pH meter – principles, measurement of pH, pKa. Electrometric determination, glass and reference electrodes. Gas-measuring electrodes – basic principles, applications of Clark electrode. Centrifuges – principles, types and operation. Microscopy – Electron Microscopy (tem, sem) Fluorescence Microscopy

Unit – II

Chromatography- basic principles – Detailed study of HPLC, principles of Ion exchange; molecular sieve, and affinity chromatography and TLC.

Electrophoresis – basic principles – its types, electrophoretic mobility and factors influencing electrophoretic mobility; Isoelectric focusing, applications, PAGE

Unit – III

Tracer techniques – nature of radioactivity, patterns of decay, half life – detection of radiation and measurements by GM Counter, Scintillation counter, autoradiography and applications of Isotopes. Application in Biology – principles, instrumentation – calorimetry, Spectrophotometer, UV/Vis, Flame photometer, Atomic absorption spectrophotometer, NMR and ESR

Unit - IV

Measures of Central Values and Dispersion – Probability; Binomial, Poisson and Normal – Correlation and Regression for simple and linear data – Testing of significance – large sample test, t test and chi-square test. Analysis of variance; One and Two way ANOVA.

Unit – V

Research – types, objective an approaches. Sample – types: Sampling Techniques.

Hypothesis; Definition, characteristics, types, significance. Literature collection web browsing. Writing review of Literature and Journal articles, impact factor and citation index, Structure of thesis Manuscript for publication and proof correction.

References

1. Kothari,C.R.	: Research Methodology – Methods & Techniques, Wishwa Prakashan
2. Gupta, S.P	: Statistical Methods, Sultan Chand & Sons.
3. Hillis DM <i>et al</i> .	: Molecular Systematics of Plants
4. Anon	: CBE Style Manual (A guide for authors; editors and publishers in biological Science)
5. Freifelder	Molecular Biology
6. Reddi, O.S	: Recombinant DNA Technology, A Laboratory Manual

COURSE – II : CLASSICAL TAXONOMY AND SYSTEMATICS

Unit-I

The scope of Taxonomy – concept of predicitivity; general and special purpose classifications, alpha and major systems of classification; The development of plant taxonomy – ancient classifications, post-Linnaean, phylogenetic and modern phenetic systems.

Unit-II

History of Indian taxonomic botany, taxonomic hierarchy, plant nomenclature – basis, rules and typification. taxonomic keys; Comprehensive view of various approaches to plant classification- natural, artificial, phylogenetic, general and special purpose. ICBN and Basic rules: specimen preparation and herbarium management.

Unit-III

Concept of characters. Role of morphology, comparative plant anatomy, embryology, karyology, palynology and paleobotany, ecology and physiology and biochemistry in taxonomy.

Unit-IV

Concept of species, ecological plant taxonomy, chemosystematics, serotaxonomy, phytogeography, speciation.

Unit-V

Floras and Monographs- their need and methodology, Floristics of Tamil Nadu and Tiruchirappalli district. Ethnobotany in India, folk culture, religion, mythology, medicinal plants.

References

Harborne, J.B. & Turner, B.L. 1984, Plant Chemosystematics, Academic Press, London.

Heywood, V.K. & Moore, D.M., 1984, Current Concepts in Plant Taxonomy, Academic Press, London.

Davis, P.H. & Heywood, V.M. 1963, Principles of Angiosperm Taxonomy, Oliver& Boyd, Edinburgh and London.

Lawrence, G.H.M., 1955, The taxonomy of Vascular Plants, Central Book Dept., MacMillan, New York.

COURSE -III : MOLECULAR TAXONOMY AND SYSTEMATICS

Unit –I

Molecular Systematics: Context and controversies; collection and storage of cells and tissues. Methods of estimating genetic diversity – isozymes, RFLP, RAPD and its modifications. Applications of molecular systematics.

Unit – II

Plant Genomes: Generating molecular data- gene mapping and gene sequencing; Types of molecular data, analysis of molecular data – alignment of sequences, homoplasy, phylogeny reconstruction, gene trees and species trees; molecular characters- chloroplast and mitochondria DNA structure and their role in systematics, Role of RNA in Systematics.

Unit- III

Digital Taxonomy – Principles of computer-aided taxonomy – data retrieval systems – Phenetic taxonomy: objectives and hypothesis – selection of operational taxonomic units, character clans and character stage, degree of overall similarity and distimularity, cluster analysis.

Unit-IV

Cladistic taxonomy: Use of morphological, phytochemical and molecular data in cladistics. molecular systematics and phylogeny. Softwares and their use in construction of dendrograms and cladistic analysis.

Unit – V

Taxonomic data bases – Need for such databases – Taxonomic Databases working Group-The Tree of life – Tree base – Database on Phylogenetic knowledge – Taxonomic information systems- Database at the Royal Botanical Garden – on line herbaria – ETI database – Taxonomic softwares: Linnaeus, Darwin , Species 2000, ILDIS (Legumeline), SA 2000 – other databases on Biodiversity.

References

Michael, G. Simpson. Plant Systematics. 2006. Elsevier Academic Press, Burlington, MA.

Gurcharan Singh, Plant Systematics, (2 ed.), 2004. Oxford & IBH Publishing Co, Pvt. Ltd., New Delhi.

Hillis, D.M., Mortiz, C. & Mable, B.K. (eds.) 1996, Molecular Systematics, Sinaver Associates, Sunderland, USA.

Harborne, J.B. & Turner, B.L. 1984, Plant Chemosystematics, Academic Press, London.

Krishnamurthy, K.V. 2003. An Advanced Text Book on Biodiversity. Oxford & IBH, New Delhi.

SEMESTER - II

COURSE – IV: BIOTECHNOLOGY (Elective)

Objectives

- i) To study the techniques used in genetic engineering
- ii) To explore the possible applications and future potentiality of biotechnology

Unit - I

Basic principles – mechanism of natural gene transfer by *Agrobacterium*; Ti plasmids Generation of foreign DNA molecules – Enzymes used in Genetic Engineering – restriction enzymes – their types and target sites; cutting and joining of DNA molecules – linkers, adapters, homopolymers; Cloning vehicles and their properties – natural plasmids, *in vitro* vectors. Phages, cosmids and T-DNA based hybrid vectors. Cloning with sstr. DNA vectors.

Unit – II

Cloning strategies – cDNA and genomic libraries; Recombinant selection and screening methods. Expression of cloned genes – Problems and solutions, shuttle vectors; DNA sequencing strategies – Sanger's and Maxam – Gilbert's methods. Applications of PCR and DNA hybridization – Southern Northern and Western blotting.

Unit – III

Techniques of tissue culture – culturing explants and haploids, protoplasts fusion and embryoids. Methods of gene transfer to plants, animals and bacteria – Ca-transfection, electroporation, shot gun, Micro injection, biolistics and lipofection. Transgenic plants; GM foods and biopesticides. Gene knockouts and transgenic animals – animal pharming and xenografting. Biodegradation stimulation and its applications. Bioleaching.

Unit – IV

Biosafety of GMOs and GM foods. Genetic Use Restriction Technology (GURT); Patenting of genes, cell and life forms; TRIP rights; Genomics – Arabidapsis, rice. Gene therapy-types, principles and applications. Gene drain – the tangled genes – Uniformity and genetics loss: directed recombination and Recombinant DNA Technology.

Unit – V

Plant metabolites engineering-food vaccines, bioplastics, plantibodies, plantigens, Production of Transgenic plant for herbicide resistance, and drought, salt, disease tolerance, quality improvement, antisesne RNA. Biotechnology and its applications: Ti and Ri plasmids-its role. Golden rice, biotrasfermation of high value metabolites through cell, tissue and organ culture. Somatic embryogenesis and synthetic seeds.

References

1. Lewin, B. (2000)	: Genes – VII Oxford University Press, New York.
2. Old R.W. and Primrose, S.B.	: Principles of Gene Manipulation, Blackwell Scientific
	(1989) Publication, London.
3. Dubey, R.C.	: A Textbook of Biotechnology
4. Narayanaswamy	: Plant Cell and Tissue Culture
5. Primrose S B & R M Twyman	: Genomics, applications in Human Biology
6. Joshi, P	: Genetic Engineering and its applications
7. Watson <i>et al</i> .	: Molecular Biology of the Gene.