

BHARATHIDASAN UNIVERSITY

TIRUCHIRAPPALLI – 620 024

M. Phil., MATHEMATICS (FT / PT) PROGRAMME (For the candidates to be admitted from the academic year 2007-2008 onwards)

Semester I					
Title of the Course			Marks		Credits
		IA	UE	Total	
Course -I	Advanced Algebra	25	75	100	4
Course - II	Advanced Analysis	25	75	100	4
Course- III	Differential Equations	25	75	100	4
Semester II					
Course – IV	Elective (Any one)	25	75	100	4
	 Fuzzy sets and systems Advanced Topics in Graph Theory Algebraic Number Theory Advanced Numerical Analysis 				
	Dissertation and Viva-Voce Viva Voce 50 marks Dissertation 150 marks			200	8

QUESTION PAPER PATTERN (Course | - |V)

- Part A: Two questions from each unit (without choice). Each question carries 2 marks. $(10 \times 2 = 20)$
- Part B: One "EITHER OR" questions from each unit Each question carries 5 marks (5 x5 = 25).
- Part C: One question from each unit. Each question carries 10 marks. The candidate has to answer three questions out of the five questions ($3 \times 10 = 30$)

COURSE – I

ADVANCED ALGEBRA

UNIT I

Definition of Category – examples – isomorphism, automorphism and endomorphism in a category – operation of a group on an object of a category – Universal objects in a category – Products and Coproducts – Covariant and contravariant functors – examples of functors – representation functors and examples – isomorphism of functors – representable functors.

UNIT II

Polynomials and group rings - Localization

UNIT III

Basic definitions relating to modules- Group of homomorphisms - Direct products and

sums of modules - Free modules - Vector spaces - The dual space.

UNIT IV

Integral ring extensions – Integral Galois extensions.

UNIT V

Basic Criteria for a Noetherian module– Associated primes – Primary decomposition – Nakayama's lemma.

TEXT BOOKS

- [1] Serge Lang, "Algebra", Springer Verlag, Revised Third Edition, 2002.
 - Unit I Chapter I Section 11 excluding the following
 - (i) example on Page 60 relating to tensor product of commutative rings
 - (ii) example on Page 63 relating to compact manifolds
 - (iii) the last example on Page 65 relating to the category of projective non-singular varieties over the complex numbers.

Unit – II - Chapter II sections 3 and 4.

Unit- III - Chapter III: Sections 1 to 6 excluding the following

- (i) example on Page 121 relating to the ring of differential operators with C coefficients and the theory of Lie groups
- (ii) example on Page 134 relating to the category of complexes of modules over a ring, vector bundles over a topological space and sheaves of abelian groups over a topological space.

Unit – IV - Chapter – VII : Sections 1 and 2

Unit – V - Chapter – X: Sections 1 to 4.

COURSE – II

ADVANCED ANALYSIS

UNIT I

Abstract Integration: The concept of measurability – simple functions – Elementary properties of measures – Integration – Convergence theorems –Role played by set of measure zero

UNIT II

Reisz Representation theorem: Topological preliminaries - Riesz representation theorem – Regularity properties of Borel measures –Lebegue measure – continuity properties of measurable functions

UNIT III

L^p spaces: Convex functions and inequalities – The L^p spaces – Approximation by continuous functions

UNIT IV

Fourier transforms: Formal properties – Inversion theorem – The Plancherel theorem

UNIT V

Preservation of angles – Linear fractional transformations – Normal families - Remainn Mapping Theorem

TEXT BOOKS

W. Rudin, Real and Complex Analysis, 3rd edition, McGraw Hill International, 1986

Unit I – Chapter I Unit II – Chapter 2 Unit III – Chapter 3 Unit IV – Chapter 9 Unit V - Chapter 14 Pages 278-289

REFERENCE(S)

- [1] Serge Lang, Complex Analysis, Addison Wesley, 1977.
- [2] V. Karunakaran, Complex Analysis 2 edn, Narosa, New Delhi, 2005.

COURSE-III

DIFFERENTIAL EQUATIONS

UNIT – I

Linear Systems: Uncoupled Linear systems – Diagonalization – Exponentials of operators – Fundamental theorem for Linear systems – Linear Systems in R^2 – Complex eigen values – Multiple eigen values – Jordan forms – Stability theory – Non-homogeneous linear systems.

UNIT – II

Non Linear systems : Some preliminary concepts and definitions – The fundamental existence–uniqueness theorem – The maximal interval of existence – The flow defined by differential Equation.

UNIT – III

Green's Function and Sturm – Liouville problems: Solutions of second order linear equations – Boundary value problems and Green's function – Sturm-Liouville problems – Convergence in the mean – Integral operator with continuous symmetric kernel – Completeness of eigen functions of Sturm-Liouville problems – Non homogeneous integral equations – Properties of eigen values and eigen functions.

UNIT – IV

Partial Differential Equations : The Heat equation – Maximum Principle – Initial Value problem – Laplace Equation – Boundary value problems – Green's Identity and Uniqueness theorem - Maximum Principle – Green's function for Laplace's Equations.

UNIT – V

The Wave equation: The one-dimensional wave equation – Higher dimensions – Energy methods – Lower-order terms.

TEXT BOOK(S):

1. L. Perko, Differential Equations and Dynamical systems, Springer-Verlag, New-York, 1991.

Unit I – Chapter 1 – 1.1 to 1.10 Unit II – Chapter 2 - 2.1 to 2.5

2. Chi Y. Lo, Boundary Value Problems, Allied-Publishers Pvt Ltd, 2003

Unit III – Chapter 3 - 3.1 to 3.9

Unit IV – Chapter 5 – 5.2,5.5 Chapter 6 – 6.1, 6.2, 6.3, 6.7

 Robert C. McOwen, Partial Differential Equations, Pearson Education, First Indian Reprint, 2004. Unit V - Chapter 3 – 3.1 to 3.4

REFERENCES

- 1. Phoolan Prasad and Renuka Ravindran, Partial Differential Equations, Wiley-Eastern Ltd, 1987.
- 2. J.N. Sharma and Kehar Singh, Partial Differential Equations for Engineers and Scientists, Narosa Publishing House, New Delhi, 2001.
- 3. W.E. Williams, Partial Differential Equations, Clarender Press, Oxford, 1980.
- 4. Garrett Birkhoff, Gian-Carlo Rota, Ordinary Differential Equations, IV Edn. John Wiley & Sons.

COURSE – IV (Elective) FUZZY SETS AND SYSTEMS

UNIT – I

Fuzzy sets – Basic types – Basic concepts – α -cuts – Additional properties of α -cuts – Extension principle for Fuzzy sets.

UNIT – II

Operations on Fuzzy sets – Types of operations – Fuzzy complements – t-Norms – Fuzzy Unions – Combinations of operations.

UNIT – III

Fuzzy Arithmetic – Fuzzy numbers – Arithmetic operations on intervals – Arithmetic operations on Fuzzy numbers.

$\mathbf{UNIT} - \mathbf{IV}$

Fuzzy relations – Binary fuzzy relations – Fuzzy equivalence relations – Fuzzy compatibility relations – Fuzzy ordering relations – Fuzzy morphisms.

UNIT - V

Fuzzy Relation Equations – General discussion – Problem partitioning – Solution method – Fuzzy Relation Equations based on Sup-i Compositions - Fuzzy Relation Equations based on inf- ω_i Compositions.

TEXT BOOK

[1] **George J.Klir and B. Yuan**, Fuzzy Sets and Fuzzy Logic, Prentice Hall of India, New Delhi, 2004.

Unit I Chapter 1 and 2

Unit II Chapter 3

Unit III Chapter 4

Unit IV Chapter 5

Unit V Chapter 6

REFERENCE(S)

[1] H.J. Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers Limited, New Delhi, 1991.

COURSE – IV (Elective)

ADVANCED TOPICS IN GRAPH THEORY

UNIT I

Perfect graphs

UNIT II

Other classes of Perfect graphs

UNIT III

Labelings of graphs

UNIT IV

Factorizations and decompositions.

UNIT V

Domination in graphs

Text Books:

- [1] D.B. West, Introduction to graph theory, PHI (2002),
 Unit I & II Chapter 8.1
- [2] G.Chartrand and L.Lesniak, Graphs and Digraphs, Chapen & Hall/ CRC Press, 1996.
 Unit III Chapter 9 Section 3
 Unit IV Chapter 9 Section 2
 Unit V Chapter 10 Sections 1 and 2

REFERENCE(S)

- [1] J.Clark and D.A.Holton, A First look at Graph Theory, Allied Publishers, New Delhi, 1995.
- [2] R. Gould. Graph Theory, Benjamin/Cummings, Menlo Park, 1989.
- [3] A.Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1989.
- [4] R.J. Wilson. and J.J. Watkins, Graphs: An Introductory Approach, John Wiley and Sons, New York, 1989.
- [5] K.R. Parathasarathy, Basic Graph Theory, Tata Mc-Graw Hill Publishing Company, New Delhi, 1994

COURSE – IV (Elective) ALGEBRAIC NUMBER THEORY

UNIT I

Algebraic background: Rings and fields - Factorization of polynomials - Field extensions - Symmetric polynomials - Modules - Free abelian groups

UNIT II

Algebraic numbers: conjugates and discriminants - Algebraic integers - Integral bases - Norms and traces

UNIT III

Quadratic fields - Cyclotomic fields - Factorization into irreducibles - examples of nonunique factorization into irreducibles

UNIT IV

Prime factorization - Euclidean domains - Euclidean quadratic fields - consequences of unique factorization - the Ramanjuan- Nagell theorem

UNIT V

Fractional Ideals - Prime factorization of ideals - The norm of an ideal.

TEXT BOOK

- [1] Ian Stewart and David Tall Algebraic Number Theory, Chapman and Hall Mathematics Series (1979).
 - Unit I: Chapter 1
 - Unit II: Chapter 2
 - Unit III: Chapter 3, and Sections 4.1 4.4 of Chapter 4
 - Unit IV: Sections 4.5 4.9 of Chapter 4
 - Unit V: Chapter 5.

ADVANCED NUMERICAL ANALYSIS

UNIT – I

Transcendental and polynomial equations: Rate of convergence of iterative methods –Methods for finding complex roots – Polynomial equations – Birge-Vieta method, Bairstow's method, Graeffe's root squaring method.

UNIT – II

System of Linear Algebraic equations and Eigen Value Problems: Error Analysis of direct and iteration methods – Finding eigen values and eigen vectors – Jacobi and Power methods.

UNIT – III

Interpolation and Approximation : - Hermite Interpolations – Piecewise and Spline Interpolation – Bivariate Interpolation- Approximation – Least square approximation and best approximations.

UNIT - IV

Differentiation and Integration: - Numerical Differentiation - Optimum choice of Step- length – Extrapolation methods – Partial Differentiation – Methods based on undetermined coefficients – Gauss methods.

UNIT – V

Ordinary differential equations : Local truncation error – Euler, Backward Euler, Midpoint, Taylor's Method and second order Runge-Kutta method– Stability analysis.

TEXT BOOK(S):

- [1] M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, III Edn. Wiley Eastern Ltd., 1993.
 - Unit I Chapter 2 2.5 to 2.8
 - Unit II Chapter 3 3.3, 3.4,3.5
 - Unit III Chapter 4 4.5 to 4.9
 - Unit IV Chapter 5 5.2, 5.3, 5.4, 5.5, 5.8
 - Unit V Chapter 6 6.2, 6.3, 6.6

REFERENCES

- [1] Kendall E. Atkinson, An Introduction to Numerical Analysis, II Edn., John Wiley & Sons, 1988.
- [2] M.K. Jain, Numerical Solution of Differential Equations, II Edn., New Age International Pvt Ltd., 1983.
- [3] Samuel. D. Conte, Carl. De Boor, Elementary Numerical Analysis, Mc Graw-Hill International Edn., 1983.