Laser Flash Analyser (LFA) -Thermal Diffusivity & Thermal Conductivity Measurement

Principle

The laser or light flash method is used for measurement of the Thermal Diffusivity of a variety of different materials. Thermal diffusivity (a with the unit mm²/s) is a material-specific property for characterizing unsteady heat conduction. This value describes how quickly a material reacts to a change in temperature.

The front surface of a plane-parallel sample is heated by a light pulse and the resulting temperature rise at the sample's rear face is recorded as a function of time.

The Light Flash (LFA) technique is a fast, non-destructive, non-contact, and absolute method for determining these thermophysical properties, including specific heat. This data can then be used for:

- Complete set of thermophysical properties such as thermal diffusivity, specific heat capacity (cp), and thermal conductivity (λ) as input data for numerical simulations.
- Material optimization according to the desired thermal performance.

Instrument Specifications:

Sample temperature range:	Room Temperature to 500°C
Thermal diffusivity range:	0.01 to 2000 mm ² /s
Thermal conductivity range:	0.1 to 4000 W/(m*K)

Heating rate (max.):	50 K/min
Xenon flash lamp:	Pulse energy: up to 10 Joules/pulse (variable), software- controlled Pulse width: 10 to 1500 μs
IR Detector:	Infrared InSb for the temperature range of RT to 500°C, MCT: -100°C 500°C
Atmosphere:	Inert, oxidizing, static, and dynamic (Ar, N2, Air)
Repeatability for well-defined	Thermal diffusivity: ±2%
samples:	Specific heat: ±3%
Accuracy for well-defined	Thermal diffusivity: ±2%
samples:	Specific heat: ±5%

Sample dimension:

- Solids/ Thin films: 10x10 mm in size for square & 10 mm in diameter for round samples, with 1.5-2.5mm thickness.
- Low viscous Liquid & Waxes samples: ~2 ml

Sample holders:

- For round and square solid samples (1cm diameter, 1x1 cm square)
- For liquids, pastes, resins, powders

General Instructions:

The instrument is capable of characterizing a wide variety of materials, including polymers, ceramics, carbons, graphite, composites, glasses, metals, and alloys.

- Samples must be dry, moisture-free, free of oil and grease.
- Compact powder samples should be used.
- Sample diameter is fixed (1cm) and thickness should be (0.15 to 0.5 cm), and for square samples size should be 1x1cm and thickness should be (0.15 to 0.5 cm)
- > The melting point of the sample should be known

The Samples will be rejected if the above instructions are not followed by the users.

Details of LFA

Brand	NETZSCH
Model	LFA 467 HyperFlash
Sponsored Agency	DST- PURSE program (Phase -2)