Course : Genomics

IDENTIFICATION OF DISEASE GENES

Dr. K. Premkumar Associate Professor Dept of Biomedical Science Bharathidasan University

PCR Animation

Denaturation: DNA melts Annealing: Primers bind Extension: DNA is replicated

The Human Genome

Genetic Polymorphisms

- Polymorphisms (common variation): majority neutral
- The rest:
- ✓ slightly "bad" (predispose to disease)
- ✓ slightly "good" (protect from disease)
- both slightly bad and good (predispose to and protect from certain conditions)

Genetic Variability

- Population is monomorphic at a locus only one allele at the locus.
- Population is polymorphic at a locus two or more alleles coexist in the population.

How SNPs are "born" in each generation?

•Number of genomes: $N = 14 \times 10^9$ (twice the number of people) •Mutation rate: $m = 2 \times 10^{-8}$ per base-pair per generation

•New mutations = Nm = 280 per base-pair per generation

•Each nucleotide in the genome gets mutated on average in 280 individuals in each generation

•The overwhelming majority of these will never attain polymorphic status (arbitrarily set at 1% of the population)

Microsatellites

- Number of repeats varies greatly between individuals
- Make up to 10-15% of the mammalian genome
- Believed to have no function
- Have high mutation rates
- Used in forensic analysis

Examples:

• Can be amplified by PCR – fragments that are generated have different length due to different number of repeats

Trinucleotide repeats:

Dinucleotide repeats:

ACGACGACGACG.....

Tetranucleotide repeats: TATCTATCTATC.....

Microsatellites are highly polymorphic due to potential for "skipping" during DNA replication

Percentage of Genetic Variation within and between populations

An average population from anywhere in the world contains 85% of all human variation at autosomal loci and 81% of all human variation in mtDNA sequences. Differences among populations from the same continent contribute another 6% of variation; only 9-13% of genetic variation differentiates populations from different continents.

Use of common variations in genetic association studies

This is possible owing to Linkage Disequilibrium (LD)

- LD Linkage Disequilibrium non-random association among alleles at two or more loci in POPULATION (or a measure of co-segregation of alleles in population)
- Haplotype combination of alleles on a chromosome (usually used with respect to a small region)

InDel Detection

<u>STEPS</u>

- 1. Candidate indel identification
- 2. Calculation of genotype likelihood through local re-

alignment

3. LD-based genotype inference and calling

Structural Variations Detection

Next Generation Sequencing

Microsatellite Detection

Restriction Fragment Length Polymorphisms (RFLPs)

• Consider two alleles having slightly different sequences

GAATTC CTTAAG

CGTAAG EcoRI will cut the first but not the second

Possible RFLP Data

Genetic Polymorphisms & Drug targets

Genetic variations induce differential drug efficacy

Non-responders

Responders

Patient population with same disease phenotype

"The classical interaction of exposure with phase I and phase II XME metabolism, and risk of developing cancer. High exposure to a foreign chemical, combined with rapid metabolic activation and slow conjugation, should put an individual at a high risk of developing cancer. Low or negligible exposure, in combination with slow rates of activation and rapid rates of conjugation, should lead to a low risk of developing environmentally caused cancer."

Enzyme	Substrates	Polymorphism frequency	Functional effects	Most important polymorphic variants
CYP1A1	Carcinogens	Relatively high	Unproven	No important functional variant alleles
CYP1A2	Drugs, carcinogens	High	Rare	CYP1A2*1F, CYP1A2*1K
CYP1B1	Carcinogens, estrogens	Rare null alleles, frequent missense mutations	At least seven haplotypes with similar activity	CYP1B1*7
CYP2A6	Nicotine, drugs, carcinogens	High in Orientals, less frequent in Caucasians	Important for nicotine metabolism	CYP2A6*1B, CYP2A6*4, CYP2A6*9, CYP2A6*12
CYP2B6	Drugs	High	Reduced drug metabolism	CYP2B6*5, CYP2B6*6, CYP2B6*16
CYP2C8	Some drugs	High	Reduced drug metabolism	CYP2C8*3
CYP2C9	Drugs	Relatively rare in Caucasians	Very significant	CYP2C9*2, CYP2C9*3
CYP2C19	Drugs	High	Very significant	CYP2C19*2, CYP2C19*3, CYP2C19*17
CYP2D6	Drugs	Very high	Very significant	CYP2D6*2xn CYP2D6*4, CYP2D6*5, CYP2D6*10, CYP2D6*17
CYP2E1	Carcinogens, solvents, few drugs	Low	No significant cases have been reported	No important functional variant alleles
CYP3A4	Drugs, carcinogens	Low	No or small	CYP3A4*1B
CYP3A5	Drugs, carcinogens	High	Significant	CYP3A5*3, CYP3A5*6, CYP3A5*7
CYP3A7	Drugs, carcinogens	Low	Some	CYP3A7*2

 TABLE 1

 Importance of Polymorphic CYP for the Metabolism of Drugs and Carcinogens