DEPARTMENT OF ENVIRONMENTAL SCIENCE AND MANAGEMENT

School of Environmental Science Bharathidasan University Tiruchirappalli – 620 024

M Sc PROGRAM

10000

lŋ

Environmental Science and Sustainable Management

SYLLABUS

(Revised on 23-12-2024)

(For Students admitted from July 2025 Onwards)

BHARATHIDASAN UNIVERSITY, TIRUCHIRAPPALLI – 620 024. CHOICE BASED CREDIT SYSTEM (CBCS)

Regulations

(For the PG MSc Environmental Science and Sustainable Management Programme)

1. Eligibility

i) For Admission

A candidate who is a graduate of this University or any recognized University in the main subject / subjects as given below against each or who has passed an examinations accepted by the Syndicate, as equivalent thereto. Provided that candidates who have qualified for the B.Sc./ B Tech/ BE shall also be eligible for MSc Environmental Science and Sustainable Management Programme

ii) For the Degree

The candidates shall have subsequently undergone the prescribed programme of study in a College affiliated to this University / Department of the University for not less than two academic years comprising 4 semesters, passed the examinations prescribed and fulfil such conditions as have been prescribed thereof.

2. Duration

The programme is for a period of two years. Each year shall consist of two semesters viz. Odd and Even semesters. Odd semesters shall be from June / July to October / November and Even semesters shall be from November / December to April / May. There shall be not less than 90 working days which shall comprise 450 teaching clock hours for each semester (exclusive of the days for the conduct of University end-semester examinations).

3.Courses in Programmes

The PG programme consists of a number of courses. The term 'course' is applied to indicate a logical part of the subject matter of the programme and is invariably equivalent to the subject matter of a "paper" in the conventional sense. The following are the various categories of the courses suggested for the PG programmes:

Core Courses and Core Choice courses (CC) 19+3, Elective Courses (EC) 3, Practical Courses (PP) 3, Non Major Elective (NME) 2, Value Added Courses 4 and a Project Work (PW) either as a part or for the whole fourth semester.

3.1 Non Major Elective and Extra Disciplinary Courses (ECs & NMEs)

Various Elective Courses is offered in the same Department for two semesters.

The Non Major Elective courses (NME) is open to all students irrespective of Science or Arts or Commerce Programmes. The Extra Disciplinary course should be availed by the student through Online Mode (MOOCs/ Swayam/NPTEL) with at least courses with a minimum of 2 credits each by Credit Transfer mode.

3.2 Selection of students to the ECs & NMEs:

a. The Department Committee shall follow a selection procedure on a first come first served basis, fixing the maximum number of students, giving counselling to the students etc. to avoid overcrowding to particular course(s) at the expense of some other courses.

b. The failed candidates in one EC / NME are permitted to opt for another EC / NME Or they are permitted to continue with the same EC / NME.

c.. In respective of Online ECs relating to programmes like Software Technology, Cyber Technology, Computer Applications and Computer Science, theory and practical components can jointly constitute the course content.

The list of Core course and the elective course offered for the students of the department are given. The non major elective course for students of other department are also given herewith.

4. Project

Each candidate shall be required to take up a Project Work; submit Project Report at the end of the second year. The Head of the Department shall assign the Guide who in turn will suggest the Project Work to the student in the beginning of the second year. One typed copy of the Project Report shall be submitted to the University through the Head of the Department on or before the date fixed by the University. The Dissertation will be evaluated by Examiners. The candidate concerned will have to defend his project in a Viva-Voce examination.

5. Semesters

An academic year is divided into two semesters. In each semester, courses are offered in 15 teaching weeks and the remaining 5 weeks are to be utilized for conduct of examinations and evaluation purposes. Each week has 30 working hours spread over 5 / 6 days a week.

6. Credits

The term 'Credit' refers to the weightage given to a course, usually in relation to the Instructional hours assigned to it. For instance, a six-hour course is assigned four credits, four / five hour course is assigned three credits and two hour course is given two credits. However, in no instance the credits of a course can be greater than the hours allotted to it. The total minimum credits required for awarding M.Sc in Environmental Science and Management is 90. The details of credits for individual components and individual courses are given in Tables–1 & 2.

7. Course

Each Course is designed variously under lectures / tutorials / laboratory or field work / seminar / practical training / assignments / Industrial visit / term paper or report writing etc., to meet effective teaching and learning needs.

8. Examinations

i. There shall be examinations at the end of each semester, for odd semesters in the month of October/November; for even semesters in April/May.

ii. A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations to be held in October/November or April/May. However, candidates who have arrears in Practicals shall be permitted to appear for their arrears in Practical examination only along with Regular Practical examination in the respective semester.

iii. A candidate should get registered for the first semester examination. If registration is not possible owing to shortage of attendance beyond condonation limit/regulation prescribed or belated joining or on medical grounds, the candidates are permitted to move to the next semester. Such candidates shall re-do the missed semester after completion of the course.

iv. Viva-voce: Each candidate shall be required to appear for Viva-voce Examination in defence of the Project only. v. For the Project Report, the maximum marks will be 80 percent and for the Viva-voce is 20 percent. vi. The results of all the examinations will be published through the department.

9. Condonation

Students must have 75% of attendance in each course for appearing the examination. Students who have 74% to 65% of attendance shall apply for condonation in the prescribed form with the prescribed fee. Students who have 64% to 50% of attendance shall apply for condonation in prescribed form with the prescribed fee along with the Medical Certificate. Students who have below 50% of attendance are not eligible to appear for the examination. They shall re-do the semester(s) after completion of the programme.

10. Question Paper Pattern

Ten Questions (No choice)

Two Ouestions from each Unit Of which five are Multiple Choice Questions And five are of other categories

Five Questions out of Eight One Question compulsory from each Unit Part B 5 x 4 = 20 marks

Three Question out of Six Questions pertaining Case Studies/ Comprehensive Questions/ Applications/ Logical Reasoning

Part C $3 \ge 15 = 45 \text{ marks}$

11. Evaluation

The performance of a student in each Course is evaluated in terms of percentage of marks with a provision for conversion to grade points. Evaluation for each Course shall be done by a continuous internal assessment (CIA) by the Course teacher concerned as well as by an end semester examination and will be consolidated at the end of the Cont are: semester.

The components for continuous internal assessment are:

Theory	Practical
2 tests : 15 Marks	Continuous performance : 20 Marks
Group Activity/Quiz : 5 Marks	Model Practical : 10 Marks
Assignments : 5 Marks	Record : 5 Marks
Total 25 Marks	Viva : 5 Marks
M	Total 40 Marks

Attendance need not be taken as a component for continuous assessment, although the students should secure a minimum of 75% attendance in each semester. In addition to continuous evaluation component, the end semester examination, which will be a written-type examination of at least 3 hours duration, would also form an integral component of the evaluation. The ratio of marks allotted to continuous internal assessment and to end semester examination is 25:75. The evaluation of laboratory component, wherever applicable, will also be based on continuous internal assessment and on an end-semester practical examination with 40:60 ratio.

12. Passing Minimum

A candidate shall be declared to have passed in each course if he/she secures not less than 40% marks in the University Examinations (30 marks) and 40% marks in the CIA (10 marks) and not less than 50% in the aggregate, including CIA and University Examinations marks. However, the program M.Sc Environmental Science and Sustainable Management requires 38 (U.E) +12 (C.I.A) marks to secure a minimum pass. Candidates who have secured the pass marks in the end-semester Examination (U.E.) and in the CIA, but failed to secure the aggregate minimum pass mark (U.E. + C.I.A.) are allowed to secure aggregate minimum pass mark by appearing for University Examination only. Candidates who have failed in the Internal Assessment are permitted to appear for their Internal Assessment marks in the subsequent semesters (2 chances will be given) by writing the CIA tests and assignments.

A candidate shall be declared to have passed in the Project work if he/she gets not less than 40% in each of the Project Report and Viva-voce but not less than 50% in the aggregate of both the marks for Project Report and Vivavoce. A candidate who gets less than 40% in the Project must resubmit the Project Report. Such candidates need to defend the resubmitted Project at the Viva-voce within a month. A maximum of 2 chances will be given to the candidate.

13. Grading

Once the marks of the CIA and end-semester examinations for each of the courses are available, they will be added. The marks, thus obtained will then be graded as per the scheme provided in Table 3.

From the second semester onwards the total performance within a semester and continuous performance starting from the first semester are indicated respectively by Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA).

These two are calculated by the following formulae

$$\mathbf{GPA} = \begin{array}{c} n \\ \sum_{i=1}^{n} C_{i}G_{i} \\ n \\ \sum_{i=1}^{n} C_{i} \\ \sum_{i=1}^{n} C_{i} \end{array}$$
 WAM (Weighted Average Marks) =
$$\begin{array}{c} n \\ \sum_{i=1}^{n} C_{i}M_{i} \\ \sum_{i=1}^{n} C_{i} \\ \sum_{i=1}^{n} C_{i} \\ \sum_{i=1}^{n} C_{i} \end{array}$$

where 'Ci ' is the Credit earned for the Course i in any semester ; 'Gi' is the Grade Point obtained by the student for the Course i and 'n' is the number of Courses passed in that semester.

CGPA = Average Grade Points of all the Courses passed starting from the first semester to the current semester.

14. Classification of Final Results

- I. The classification of final results shall be based on the CGPA, as indicated in the table below.
- II. For the purpose of Classification of Final Results, the candidates who earn the CGPA 9.00 and above shall be declared to have qualified for the Degree as "Outstanding". Similarly, the candidates who earn the CGPA between 8.00 and 8.99, 7.00 and 7.99, 6.00 and 6.99, and 5.00 and 5.99 shall be declared to have qualified for their Degree in the respective programmes as "Excellent", "Very Good", "Good", and "Above Average" respectively.
- III. Absence from an examination shall not be taken as an attempt.

15. Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree only after he / she has earned the minimum required credits for the programme prescribed therefore (i.e. 90 credits).

Marks Range	Grade Point	Corresponding Grade
90 and above	10	0
80 and above but below 90	9	A+
70 and above but below 80	8	A
60 and above but below 70	7	B+
50 and above but below 60	6	B
Below 50	N.A.	R.A.

Grading of the Courses

Final Result

CGPA	Corresponding Grade	Classification of Final Results
9.00 and above	0	Outstanding
8.00 to 8.99	A+	Excellent
7.00 to 7.99	A	Very Good
6.00 to 6.99	B+	Good
5.00 to 5.99	В	Above Average
below 5.00	R.A.	Re-Appearance

Credit based weighted Mark System is to be adopted for individual semesters and

cumulative semesters in the column 'Marks Secured' (for 100).

Table 1: Details on the number of courses and credits per course in
MSc Environmental Science and Sustainable Management ProgrammeCore Courses (CC) 15, Elective Courses (EC) 4, Practical Courses (PP) 2, Non Major Elective (NME) 2, Value
Added Courses 4 and a Project Work (PW)

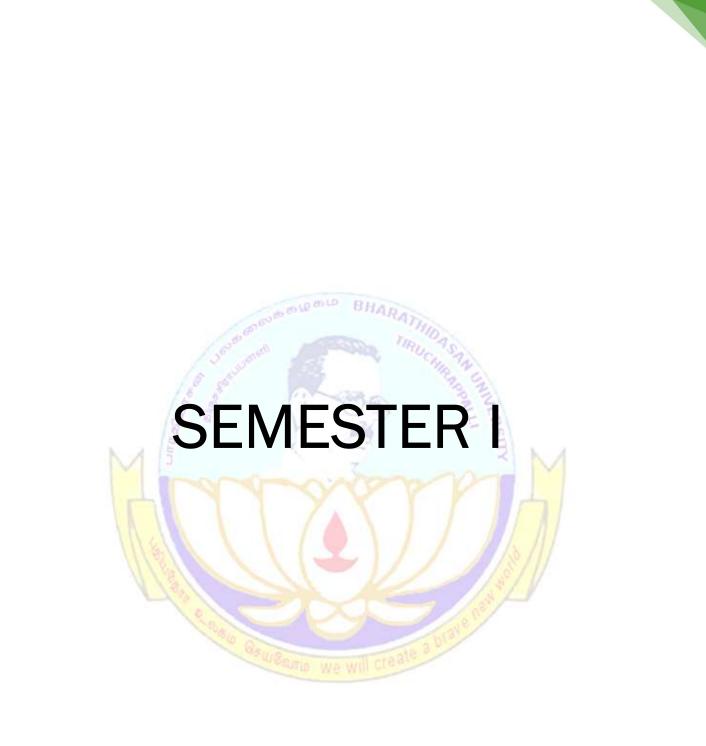
S.No	Study Component	Number of Courses	Credits per course	Total Credits	Total weekly hours
1.	Core Course (CC)	12	4	48	6
2.	Practical Course (PP)	3	5	15	-
3.	Elective Course (EC)	3	3	9	4
4.	Project Work (IV Semester)	1	10	10	-
5.	Summer Internship	1	4	4	-
6.	Non Major Elective (NME) (II and III Semester)	2	2	4	3
				90	
7.	Value Added Course	4	2	8	3
		Te	otal Credits	90 + 8	
	Extra Credits that	t can be Earned			
8.	Extra Credit Course : MOOC /SWAYAM/NPTEL/Coursera	3	2	6	
	SED GE	W86JTID WE WI	create a brave		

	PROGRAMME OUTCOMES
PO1	This program is designed to develop comprehensive and deep knowledge of the field(s), in which the "one semester" thesis research is embedded.
PO2	The challenging, student-centered curriculum is research - based and technology - Oriented and provides a foundation for life - long learning.
PO3	The program caters to students' interest in different domains of biology – from classical to modern, including varied specializations.
PO4	Training in specialized domain of biology is intended to prepare students to become qualified graduates to address biology-related issues at national and international levels.
PO5	Biology being evidence-based, the program is grounded with an equal number of laboratory courses in the formal practices of observation, experimentation, testing hypotheses and interpretation.
PO6	Biology relies on applications of quantitative analysis and mathematical reasoning; therefore, the curriculum is designed to train the students to apply descriptive and inferential statistical methods, design and analyse diverse data set and understand the underlying probability in the calculations.
PO7	The program provides training to the students to develop their knowledge and skills to communicate appropriate scientific content, formatting and presentation of data through scientific seminars.
PO8	The program trains the students to understand the relationship between science and society, which enhances their vision to apply their knowledge in health systems, economic growth and sustainable environment.
PO9	The 10-credit research-oriented course engages in rigorous and original research that advances knowledge in their chosen field of study within the discipline.
PO10	Upon successful completion of the M.Sc. Environmental Science and Sustainable Management program with grade 9.0 and above (CGPA), the students shall be able to summarize the major, central tenets in their disciplines; this will provide ample chances for them to qualify for national eligibility tests and professional development gained will lead them to be successful in their careers in academia / industry.

PROGRAMME SPECIFIC OUTCOMES

Upon completing the M.Sc. Environmental Science and Sustainable Management program, graduates will be equipped to:

gradua	ates will be equipped to:
PSO1	Excel as management professionals specializing in corporate environmental management.
PSO2	Demonstrate expertise in effluent treatment and solid waste management
PSO3	Conduct comprehensive environmental audits, including energy audits, with specialized training.
PSO4	Serve as consultants for environmental impact assessment projects, combining theoretical knowledge with practical skills.
PSO5	Manage projects in urban and rural sectors focusing on environment, health, sanitation, and education.
PSO6	Establish entrepreneurial ventures, including NGOs, and promote environmental awareness and activism.
PSO7	Lead development and environmental projects, leveraging advanced tools and technologies.
PSO8	Provide skilled consultancy and project management in remote sensing and GIS applications for urban governance, health, forestry, biodiversity, and related fields.


Semester	Course	Credit	Ins.Hrs/	Exam hours	M	arks	Total
			Week		Int.	Extn	
Ι	CORE I	4	4	3	25	75	100
	CORE II	4	4	3	25	75	100
	CORE (CHOICE) III	4	4	3	25	75	100
	ELECTIVE I	3	3	3	25	75	100
	PRACTICAL I	5	8	3	40	60	100
II	CORE I V	4	4	3	25	75	100
	CORE V	4	4	3	25	75	100
	CORE(CHOICE)VI	4	4	3	25	75	100
	ELECTIVE II	3	3	3	25	75	100
	NON MAJOR ELECTIVE I	2	2	3	25	75	100
	PRACTICAL II	5	8	3	40	60	100
III	CORE VII	4	4	3	25	75	100
	CORE VIII	4	4	3	25	75	100
	CORE IX	4	4	3	25	75	100
	CORE (CHOICE) X	4	4	3	25	75	100
	ELECTIVE III	3	3	3	25	75	100
	NON MAJOR ELECTIVE II	2	2	3	25	75	100
	PRACTICAL III	5	8	3	40	60	100
IV	CORE XI	4	4	3	25	75	100
	CORE XII	4	4	3	25	75	100
	PW I	10 -	-	3	25	75	100
	SI I	4	-	3	25	75	100
	1 1 1 1	90		1			2200
Semester I	Value Added Course I	2	2	3	25	75	100
Semester II	Value Added Course II	2	2	3	25	75	100
Semester III	Value Added Course III	2	2	3	25	75	100
Semester IV	Value Added Course IV	2	2	3	25	75	100

M Sc Environmental Science and Sustainable Management Course Structure

BHARATHIDASAN UNIVERSITY, TIRUCHIRAPPALLI 620 024 M Sc Environmental Science and Sustainable Management (Application to the candidates admitted from the academic year 2025 onwards)

_	Course	CORE/	List of Courses Offered under CBCS						
S.No	Course	ELECTIVE	Total Credits 90	Course Instruc	Credits	Hours /Week	L Lecture	T Tutorial	P Practica
			Title					L L	-
			Semester I						
1	25PGCC01	CORE I	Introduction to Environmental Development and Sustainability Science	RM	4	4	3	1	-
2	2500000	CODE II		MD	4	4	2	1	
2	25PGCC02	CORE II	Remote Sensing and GIS for the Environment	MP	_	-	3	1	
3	25PGCC03	CORE (CHOICE)	Environmental Pollution and Toxicology	SN	4	4	3	1	-
		III	Natural Resources Management						
4	25PGEC01	ELECTIVE I	Waste Management Strategies	MP	3	3	2	1	-
			Environmental and Occupational Epidemiology						10
5	25PGPP01	PRACTICAL I	Practical – I (Environmental Quality Analysis)	RM	5	8	-	2	10
			Credits for	Semester I	20				
		•	Semester II		•				
6	25PGCC04	COREIV	Environmental Impact Assessment	RM	4	4	3	1	-
7	25PGCC05	CORE V		SN	4	4	3	1	
		CORE V	Environmental Law, Policies and Ethics	SIN	-	-			-
8	25PGCC06	CORE(CHOICE)VI	Industrial Health and Safety	MP	4	4	3	1	-
		, ,	Environmental Informatics and Spatial Data Modelling						
9	25PGEC02	ELECTIVE II	Urban Environmental Sustainability: Issues and Strate		3	3	2	1	-
			Industrial Pollution, Management and Remediation	/MP	-	-	-		
10	NME01	NME I	Non-Major Elective	MP	2	2	2	-	
11	25PGPP02	PRACTICAL II	Practical – II (Spatial Analysis and Modelling)	MP	5	8	-	2	10
		15	Credits for	Semester II	22				
		12	Summer Internship	3		Evaluati	on in IV	Semest	er
			Semester III		1				
12	25PGCC07	CORE VII	Corporate Strategies for Environmental Management	RM	4	4	3	1	-
13	25PGCC08	CORE VIII	Microbial Techniques	SN	4	4	3	1	-
14	25PGCC09	CORE IX	Environmental Data Analytics and Research Methods	MP	4	4	3	1	-
15	25PGCC010	CODE (CHOICE) V	Environmental Social Governance	MP	4	6	4	2	-
		CORE (CHOICE) X	Sustainable Ecotourism	MP		1			
	25PGEC03	11.3	Green Technologies and Energy Management						
16		ELECTIVE III	Climate Change, Mitigation, Adaptation and Resilience	e SN	3	3	2	1	-
17	NME02	NME II	Non-Major Elective	RM	2	2	2	-	
18	25PGPP03				5	8	-	2	10
10	251 011 05	PRACTICAL III	Practical – III (Microbial Techniques)	SN		0		2	10
			Credits for S	emester III	26				
		-	Semester IV						
19	25PGCC011	CORE XI	Global and National Environmental Issues (Self Study paper)	AP/RM/SN	4	4	3	1	-
20	25PGCC012	CORE XII	Ecosystem Services and Sustainable Management (On Mode)	line RM	4	4	3	1	-
21	25DCDW01	PW I		AD/DM/CNT	10	Cum	lative cre	dite for D	Wand
21 22	25PGPW01 25PGSI01	SI I		MP/RM/SN MP/RM/SN	10		intive cre		
22	25PGS101	511			22	50		emonp	
			Credits for S						
			TOTAL NUMBER OF	CKEDIIS	90				
1	25004.001	VACI	VALUE ADDED COURSES			2	1	1	
2	25PGAC01	VACI	Value Added Course I		2	2	1	1	-
	25PGAC02	VACII	Value Added Course II		2	2	1	1	-
3	25PGAC03	VACIII	Value Added Course III		2	2	1	1	-
4	25PGAC04	VACIV	Value Added Course IV		2	2	1	1	-
			TOTAL NUMBER OF	CREDITS	8				
			EXTRA CREDIT COURSES						
1	Code given	Extra Credit Course	MOOC - course – I /SWAYAM/NPTEL/Coursera		2	-	-	-	-
2	by course	Extra Credit Course	MOOC - course – II /SWAYAM/NPTEL/Coursera		2	-	-	-	-
3	provider	Extra Credit Course	MOOC - course – III /SWAYAM/NPTEL/Coursera		2	-	-	-	-
	F		TOTAL NUMBER OF	CDEDITO	6				
				I KELLIN					

Course Instructor: Dr.R.Mohanraj

CORE 1 : INTRODUCTION TO ENVIRONMENTAL DEVELOPMENT AND SUSTAINABILITY SCIENCE

Course Code: 25PGCC01

Course Objectives:

- To understand concepts and theories of planet earth evolution and its elemental composition
- To distinguish various spheres and layers within the earth and its salient features
- To acquire comprehensive knowledge on structure and functions of ecosystem
- To realize the core concepts of sustainability and sustainable development
- Discerning the trade-off between environment and society

• Disce * Lectur			trade-off [[utorial-T		environ		d societ				L	Т	I		С
Per Wee		1	utvi läl- l		icucal-	1	Cieuit-	L			3	3	1 -		<u> </u>
Course C		mes:	:											K	-
			the funda	amental tl	heories	of radiat	tion and	matter e	era				k	<u> </u>	
2. C	rystal	ize v	arious sp	heres of e	earth ar	nd its fun	ctional	process					ŀ	K3 &	K4
3. E	lucida	ate th	ne biosphe	ere, biodi	versity	and the	ecologic	al proce	ss in th	e earth				K2 &	K3
4. A	nalyz	e the	e concept	of sustair	nable de	evelopme	ent and	the susta	inabilit	y polic	y fram	eworl	k k	K3 &	K6
5. E	valua	te th	e implicat	tions of h	uman c	entric in	terventi	ons in su	Istainab	le deve	lopme	nt	k	K5 &	K6
Knowled	ge le		Rememb	1 4	10.				- 62 - 11	1 m	-		ynthe	size	(K5)
Evaluate	, ,		1ª	5 8		13	189	2	24	2					
Mapping			utcomes					\mathcal{D}°		2 2					
	CO/F	0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P P	010		
	CO1		S	L	Μ	L	L	М	L	L	М		Μ		
	CO2		S	L	М	L	М	М	L	L	М		М		
	CO3		S	М	М	М	S	М	М	М	М		S		
	CO4		S	L	M	S	M	M	M	M	M		S		
	CO5		S	М	М	М	S	М	М	М	S		S		
			Strong				oderate		Lov	N					
Assessme	ent M	etho	ds: Test-	T, Semin	har-S,			Discuss	sion- D	3	-	Γ	C	٨	
				10000		Modu			his	/		1	S	A	D
Module l	[net Earth:								<u> </u>	\checkmark		\checkmark	~
5 lecture	s	and dark matter, Planets, Sun and Earth - Earth layers - Core, Mantle, Crust Rocks, Minerals and Ores - Elemental abundance in each													
	~		stituent.												
			nerozoic												
Module l	TT I	Bio	spheres:	Atmosph	ere - la	yers, con	mpositio	on and s	ignifica	ince. So	olar	~			1
			rgy and g						•						
6 lecture	s		drological												
			face flow ks cycle a												
			ning proc				•	· ·	amerm	g and i	5011				
Module l	ш		osystems						oducers	s, flow	of	\checkmark	\checkmark		V
			rgy, food	,		,	<u> </u>								
6 lecture	S		ergreen, D			· •					-				
			rine ecos												
			ction, thr												
			pacts and							wei lar	ius,				
		ma	ngroves a	nu coral I	cers, p	i o iecied	area nel	WOIK III	mula						

Module IV	Concepts of Sustainable Development: Development and Environment, Distribution of Wealth, Human capital and Natural Capital, Sustainable	✓	✓	
6 lectures	Development Concept - History and Evolution, Limits to Growth, Bruntland Period, Rio Declaration on Environment and Development,			
	Agenda 21, Triple bottom line concept of sustainable development, Neo-liberalism and Environment, Millennium Development and Sustainable development goals			
Module V	Social and Ecological Dimensions of Sustainable Development: Poverty driven development issues, inequality, conflict, and war, food	~		\checkmark
5 lectures	security and crisis. Energy security - continuing use of fossil fuels, nuclear energy, wood fuels. Species and Ecosystems - extinction, trends, threats to the natural capital			
Current Trends	Advances in : Recent concepts – Technological and Scientific developments – Real world cases/examples – Policy/Practice updates – Contradictions – World/Indian Scenario			~
2 lectures				
30 Lectures	BOLD BHARAS			

References

- Bert de Vries (2023) Sustainability Science, Cambridge University Press
- N Shikazono (2020) Introduction to Earth and Planetary System Science: New View of Earth, Planets and Humans(Special Indian Edition / Reprint year : 2020), Publisher Springer Nature
- R Voller (2021) Hubble, Humason and the Big Bang: The Race to Uncover the Expanding Universe, Publisher Springer Nature
- Nickolay Y. Gnedin, Simon C. O. Glover, Ralf S. Klessen, Volker (2015) Star Formation in Galaxy Evolution: Connecting Numerical Models to Springel · 2015
- Introduction to Sustainable Development, 2015 International Hellenic University SisayAsefa, The Concept of Sustainable Development: An Introduction, 2005 Upjohn Press Book Chapters
- J.R. Siche, F. Agostinho, E. Ortega, A. Romeiro, Sustainability of nations by indices, ECOLEC-02987
- I. Knoepfel, Corporate Environmental Strategy, Vol. 8, Iss. 1 (2001)
- Welfens, P.J.J., Perret, J.K., Irawan, T., Yushkova, E, Towards Global Sustainability: Issues, New Indicators and Economic Policy 2016, Springer Publications
- Women in Sustainable Agriculture and Food Biotechnology, Privalle, L.S. (Ed.) (2017), Springer Publications
- Our Common Future (1987) Author: Brundtland Commission, Publisher: Oxford University Press
- Miller, G.T. (1991). Environmental Science: sustaining the Earth, Thompson Brooks /Cole, Belmont, CA

Course Instructor: Dr.M.Prashanthi D

CORE 2 : REMOTE SENSING AND GIS FOR THE ENVRONMENT

Course Code: 25PGCC02

Course Objective: To help students understand the concept of remote sensing, GIS and GPS, by focusing on some of the underlying principles and to specially understand on how to use these tools to assess, estimate environmental changes and derive data from these sources.

* Lectur		utorial-T	*Pra	ctical-F	*(Credit-C				L	T	P	C
Per We										3	3	1	4
	Outcomes:												KL
	Basic under environment	0			emote s	ensing	and ho	w radi	ation in	teracts	with	K1	
2. I	Learning the	e methods	of meas	urement	ts and m	ethods o	f image	e restora	tion and	correct	ions	K2	, K3
	Enrich the environment		0	· · · ·	throug	h GIS	and to	advant	ageously	use i	it for	Ke	5
4.	Analyze dif	ferent env	vironmer	ntal data	through	GIS and	alysis m	ethods				K5	
	To effective nore approp	-		tion from	n satelli	te data a	nd coup	ole GIS 1	to derive	:		K5	&K6
Knowlec (K6)	lge level: R	emember	(K1); U	nderstar	nding (K	2); Perfo	orm (K3	3); Analy	yse (K4)	; Synth	esize (I	X5);	Evalua
Mapping	g course ou	tcomes w	ith prog	gramme	outcon	ies	3	20	21				
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	
	CO1	S	М	М	L	М	М	М	М	S	М		
	CO2	S	S	М	L	М	М	М	М	М	М		
	CO3	S	М	Μ	М	S	М	S	Μ	S	S		
	CO4	S	S	М	М	М	М	S	М	S	S		
	CO5	S	S	М	М	S	М	S	М	S	S		
		Stron			Mode			LOW		-			
Assessm	ent Method			ar-S, A	ssignm	ent- A,	Discuss	ion- D	1.81	1			
		-			Module			3.//	25/	Т	S	A	D
		ry of re					-	-	-			v	/ /
Module		omagneti			-			-					
5 lecture		etic Radia											
		and Atn e and Pas											
		rs, Radar			•	• •	•	les- ban	lines an				
	Aorio	l photogra						cess, El	ements of	of 🗸	8		
Module		interpre	1 2		1	0 1		,					
6 lecture	es Acqui	sition, S	ource o	f Image	e degra	dation,	Image	rectifica	ation an	nd			
		ation, Ge				ic corre	ctions,	UAV a	nd Dror	ne			
		Technolo											
Module			-		-	-		-			\checkmark		\checkmark
mount	types,	GIS Basics: Concepts and Components, layers and features, Spatial data vipes, Digitisation, Data conversion, Raster data and Vector data structure,											
	10	motion +-			+-11:+-	Com-+-11	ation -	.1 0:		C			
6 lecture						Constell		U	· ·				
	Measu	luction to urements are for Re	and inst	rumenta	tion, Fa	ctors Inf	luencin	g GPS	Accurac	y.			

	Introduction to Many and Man Duricational Trans. Man Characteristics		/	
Module IV	Introduction to Maps and Map Projections: Types, Map Characteristics, Map Scale and effects, Spatial Data Analysis- Data attributes and spatial	V	\checkmark	
6 lectures	topology, Geographical datasets and data management, Vector Overlay Processes, Thematic Mapping, GIS analysis and queries, Data quality and errors, GIS map output, Real Time GIS, 3D GIS and Digital Twins, IoT and Dynamic Mapping, Crowdsourcing and Citizen Science, Volunteered Geographic Information (VGI), Google earth engine			
Module V 5 lectures	Image pre-processing and correction methods, Image enhancement, Principal Component analysis, mosaic and subsets, Spatial filtering, Data merging, Digital image Classification & Advanced classification techniques, Change detection Analysis, Vegetation Indices	~		✓
Current Trends 2 lectures	Recent concepts – Latest Satellites launched, new Technological and Scientific developments –World/Indian Scenario- latest Applications- New Geomapping devices and Opensource software			~
30 Lectures	BORDE BHARAS			

References:

- 1. Lillesand and Kiefer, Remote Sensing and Image Interpretation, 2015, 7th edition, John Wiley and Sons, NJ, USA
- 2. Sabins, Floyd F Jr, Remote Sensing: Principles and Interpretation, 2007, W.H Freeman and Company, NY
- 3. Kang-tsung Chang, Introduction to Geographic Information Systems, 2006, Tata McGraw Hill Edition, New Delhi
- 4. James B Campbell, Introduction to Remote Sensing, 2007, The Guilford Press, 4th edition, NY, USA
- 5. John R Jensen: *Remote Sensing of the Environment: An Earth Resource Perspective* (2nd Edition), 1996, Prentice Hall Series in Geographic Information Science
- 6. Peter A. Burrough, Rachael A. McDonnell, Christopher D. Lloyd: Principles of Geographical Information Systems
- Afonso Oliveira, Nuno Fachada, João P. Matos-Carvalho (2024). Data Science for Geographic Information Systems, (2024) 8th International Young Engineers Forum on Electrical and Computer Engineering (YEF-ECE), 1-7, IEEE, 2024
- 8. Hao Xu, Yuanbin Man, Mingyang Yang, Jichao Wu, Qi Zhang, Jing Wang (2023). Analytical Insight of Earth: A Cloud-Platform of Intelligent Computing for Geospatial Big Data
- 9. Dayna Nielson (2017) Geographic Information Systems (GIS): Techniques, Applications and Technologies, Nova Publications
- 10. Arvind W. Kiwelekar, Geetanjali S. Mahamunkar, Laxman D. Netak, Valmik B. Nikam (2020). Deep Learning Techniques for Geospatial Data Analysis Springer, Cham
- 11. Chandra P. Giri (2022), Remote Sensing in Mangroves Volume II, Mdpi AG Publishers

Course Instructor: Dr.N.D.Shrinithivihan

CORE (CHOICE) 3 : ENVIRONMENTAL POLLUTION AND TOXICOLOGY Course Code: 25PGEC03

Course Objectives:

- Understand different types of environmental pollutants and its sources
- To study the industrial process and pollution sources of major red category
- To learn various met hods to assess and analyze environmental pollutants

* Lectu		rial-T	*Practi	cal-P	*Cre	edit-C					L	Т	Р	C
Per We											3	1	0	4
Course	Outcomes:													ΧL
1.	Explain the so biological syst	tems.					Ŷ		,			d	K1,	K2
2.	Utilize scienti												K3	
3.	Identify the ef and wildlife.						•	-	•	,			K4	
4.	Conduct risk a persistence.		-	-	10 mil	BHA	-						K6	
5.	Recommend p prevention and										itioi	1	K5	
Knowlee (K6)	dge level: Rem	ember (K	(1); Und	erstandi	ng (K2);	Perform	n (K3);	Analyse	e (K4); S	Synthesi	ze (K5); F	Evalua	te
. ,	g course outco	mes with	n progra	mme ou	itcomes	202 -		300	3					
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	010		
	CO1	S	Μ	Μ	Μ	Μ	Μ	Μ	Μ	S		Μ		
	CO2	S	S	Μ	L	Μ	Μ	S	Μ	Μ		Μ		
	CO3	S	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ		S		
	CO4	S	S	Μ	Μ	Μ	Μ	S	Μ	Μ		Μ		
	CO5	S	Μ	Μ	S	S	S	Μ	Μ	S		S		
		Strong			Ioderat		Low							
	ent Methods:	Test-T, S	Seminar	- S, Assi			scussion	I-D	131			~	1.	
Module					Modul		0	D 11			Т	S	A	D
5 lecture	resources chemistry fluoride, BOD), Pe nuclides (Pharmac	; Point a y: solids a heavy more resistent of in the v ceuticals,	nd Nonp and turbi etals, org organic p vater, G antibioti	oint sou idity, alk ganic po ollutants round v cs)	rces of calinity, llutants s in wate water po	pollutio acidity, – oxyge er (DDT ollution,	n, Wate salinity n dema , PCBs, emerg	r Polluta , hardno nding w PAHs, I ing wat	ants and ess, nutr vastes, (Dioxin), er poll	l their rients, COD, radio utants	•	V	v	~
Module 6 lecture	es Pollutants transform pollutants change; (Transbou	s (CO, nations, P s, Hazard Green ho ndary air	Sox, Primary a ous Air I use gase pollutio	NOx), air pollu Pollutant es emiss n, Dust s	Ozone tants, S ts, Volat ion and storm	pollut econdar ile orga climate	ion an y air po nic pollu change	nd its ollutants utants, C e, Acidio	atmosj , Organ Global cl c Depos	oheric iic air imate sition,	✓	~		
Module 6 lecture	1	nical poll wastes (utants (oil drilli	fertilizeı ng, coal	rs, pesti fired po	cides, a wer pla	nimal v nts, min	wastes), ing), M	saline unicipal	soils, solid	~	~		~
Module 6 lectur		· ·				rganic c	ontamir	ant, Me		•	\checkmark	\checkmark		

	Uptake of contaminants: different routes, Elimination of contaminants Toxicokinetics: Movement of chemicals through organism, properties of toxic compounds, Physiological effects of pollutants			
Module V 5 lectures	Molecular effects: protein response, Cell, tissue and organ damage, Molecular effects of contaminants: detoxification, DNA modification, Chromosome / Gene damage, Sublethal effects: reproduction, growth and development, Acute vs. chronic effects: , Dose-Response Relationships, Thresholds, LD50, NOAEL, and LOAEL, Population effects: dynamics, demography, Global movement of contaminants, Endocrine Disruptors and Carcinogens ,Persistent Organic pollutants and Risk assessment, Human risk assessment and epidemiology, Microplastics and Nanoplastics Pollution, PFAS (Per- and Polyfluoroalkyl Substances), Emerging Contaminants	~		~
Current Trends 2 lectures	Advances in Analytical Techniques, E waste and Toxicology, AI and machine learning in predicting the environmental fate of pollutants and their toxicity.		√	√
30 Lectures	DID BHAD			

References

- 1. Understanding environmental Pollution, Second edition, Marquita K. Hill, Cambridge University Press, New Delhi 2004.
- 2. Environment and Pollution Science, I. L. Pepper etal, Elsevier press, 2006.
- 3. Environmental Chemistry, S. E. Manahan, Lewis Publishers, 2004
- 4. Soil Pollution, I. A. Mirsal, Springer Publications, 2004.
- 5. Handbook of industrial and hazardous wastes treatment, Edited by L.K Wand et al, Marcel Dekker, New York
- 6. Chemistry of the environment, Bailey R. Aetal, Academic Press, 2005.
- 7. Basic Concepts of Environmental Chemistry, D.W. Connel, Lewis Publishers, Newyork, 1997
- 8. APHA (1992) Standard methods for the Examination of water and waste water. 18th edition. American Public Health Association, American Water Works Association and Environment Federation, Washington
- 9. Lorris G. Cockerham, Barbara S. Shane (1994) Basic Environmental Toxicology, CRC Press
- 10. Rose J (1998) Environmental Toxicology, Gordon and Breach Publications,
- 11. Shaw I and Chadwick J (2016) Principles of Environmental Toxicology, CRC Press
- Pim de Voogt, María Fernanda Cavieres, James B. Knaak, Annemarie P. van Wezel, Ronald S. Tjeerdema, Marco Vighi (2022) Book series, Reviews of Environmental Contamination and Toxicology, Springer Publications
- 13. Ming-Ho Yu, Humio Tsunoda, Masashi Tsunoda (2011) Environmental ToxicologyBiological and Health Effects of Pollutants, Third Edition, CRC Press
- 14. Pankaj Gupta, Amit Chanjta, Yogesh Mehta(2024) Environmental Toxicology By Copyright 2024, CRC Press
- 15. Esref Demir and Sam Kacew (2024) Environmental Toxicology and Human Health, MDPI

Course Instructor: Dr.N.D.Shrinithivihahsh

CORE (CHOICE) 3 : NATURAL RESOURCES MANAGEMENT Course Code: 25PGEC03

Course Objectives:

- Gain foundational knowledge of renewable and non-renewable resources, their distribution, availability, and ecological significance.
- Examine approaches for the sustainable use and conservation of energy, water, forest, and biodiversity resources in the context of climate change and global development goals.
- Analyze national and international policies, laws, and institutional mechanisms that influence natural resource management.
- Develop the capacity to identify, analyze, and propose context-specific, interdisciplinary solutions to resource management challenges.

* Lectu	re-L *Tut	orial-T	*Pract		*Cr	edit-C					L	Т	P	C
Per We											3	1	0	4
	Outcomes: A	t the end	of the co	ourse, st	udents	will						1	ŀ	KL
	Classify and a						al resou	rces at	local, na	tional, a	und		K1.	K3
	global scales.			Tal	510 mil	BHA								
2.	Analyze interl	inkages b	etween n	atural re	sources,	, ecosys	tems, hu	ıman liv	velihood	s, and			K2,	K3
	development p	processes.	30				TIR	20						
3.	Evaluate the e	ffectivene	ess of sus	tainable	resource	e manag	gement p	oractice	s, includ	ing inte	grate	ed	K6	
	approaches an	d commu	nity-base	d model	s.	_		2	6	-	-			
4.	Critically inter	pret legal	l, instituti	ional, an	d policy	framew	vorks re	lated to	natural	resource	e		K6	
	governance.	B	10		1.	Un	S:	The second se						
5.	Develop inform	med, inter	rdisciplin	ary proj	ect prop	osals or	strategi	es for a	ddressin	ig resou	rce		K4,	K5
	depletion, deg								3	10.00				
	dge level: Rer	nember (1	K1); Und	lerstandi	ng (K2)	; Perform	m (K3);	Analys	e (K4);	Synthes	ize (I	K5); I	Evalua	ate
(K6)														
Mappin	g course outc	omes wit	h progra	amme o	utcomes		-							
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	D10		
	CO1	S	Μ	Μ	S	S	Μ	S	S	S	S			
	CO2	S	Μ	Μ	S	S	S	S	Μ	S	S			
	CO3	S	S	Μ	S	S	S	S	Μ	S	S			
	CO4	Μ	L	Μ	S	Μ	S	Μ	L	Μ	S			
	CO5	S	Μ	Μ	S	S	S	S	S	S	S			
		Stron	g	Μ	Ioderate	e	Low							
Assessn	nent Methods	: Test-T,	Seminar	r- S, Ass	ignmen	t- A, Di	scussio	n- D						
Module		,			Modul						Т	S	Α	D
5 lectur	Renewa	als and able vs. n	on-renew	able, fos	ssil fuels	, nuclea	r; Globa	l and na	ational tr	ends:	√		~	~
	0,	demand		· ·			L .			0.				
		ns: Water												
		ition and logies: Ra												
		desalinatio		nai vesti	ng, mei	0 miga		Inarge	pit and t	LIECK				
Module	· · · · · · · · · · · · · · · · · · ·	Resource		iodivers	ity Man	ageme	nt. Fore	stecos	rstems. [Types	/			
6 lectur		al, temper			•	0				• •	v			
o icciul		Genetic,												
	1010000													
	Carbon	sequest	ration F	Forest re	esource	assessn	nent: In	ventory	/ techni	ques				
		s sequest s estima						•		1 7				

Module III 6 lectures	Sustainable Resource Management Strategies: Principles, institutional framework, case studies; Sustainable forestry practices: Certification, ecosystem-based management, low-impact logging; Community-based management: Participatory approaches, joint forest management (JFM), Economic valuation of resources: Market and non-market values, cost-benefit analysis in conservation,	~	~	~
Module IV 6 lectures	Resource Economics: Economic classification of resources: renewable vs. non-renewable, Concepts of scarcity, opportunity cost, and externalities, The tragedy of the commons and common-pool resource dilemmas. Principles of supply, demand, and market equilibrium for natural resources. Economic efficiency and optimal resource allocation. Discounting and time preference in resource economics. Renewable and Non-renewable Resource Economics	~	~	
Module V 5 lectures	Resource Conservation: Definitions and scope: conservation vs. preservation. Importance: ecological stability, intergenerational equity, ecosystem services. Historical evolution of conservation movements (global and Indian perspectives). Contour farming, terracing, mulching, cover cropping, check dams, Watershed management and integrated approaches to water conservation.	~		~
Current	Advances in : Recent concepts - Technological and Scientific			\checkmark
Trends	developments – Real world cases/examples – Policy/Practice updates –			
2 lectures	Contradictions – World/Indian Scenario			
30 Lectures				

References

- Tietenberg, T., & Lewis, L. (2018), Environmental and Natural Resource Economics (11th Ed.) Routledge.
- Pearce, D.W., & Turner, R.K. (1990) *Economics of Natural Resources and the Environment* Johns Hopkins University Press.
- Hanley, N., Shogren, J.F., & White, B. (2019), Environmental Economics: In Theory and Practice (2nd Ed.) Palgrave Macmillan.
- Barbier, E.B. (2011), *Capitalizing on Nature: Ecosystems as Natural Assets –* Cambridge University Press.
- Meffe, Gary K., Carroll, C. Ronald, et al, *Principles of Conservation Biology* (3rd Edition) Sinauer Associates, 2006.
 Primack, Richard B. *Essentials of Conservation Biology* (6th Edition), Oxford University Press, 2020.
 Singh, J.S., Singh, S.P., & Gupta, S.R., *Ecology, Environmental Science and Conservation* S. Chand Publishing, 2014. ISBN: 9788121932060
 Kumar, U. & Asija, M. *Biodiversity: Principles and Conservation* Agrobios (India), 2000.

Groom, Martha J., Meffe, Gary K., and Carroll, C. Ronald, *Principles of Conservation Biology* (International Edition) Oxford University Press, 2005.

Chapin, F. Stuart III, Matson, Pamela A., & Vitousek, Peter M., *Principles of Terrestrial Ecosystem Ecology* (2nd Edition), Springer, 2011.

- Chris Armstrong *Global Justice and the Biodiversity Crisis: Conservation in a World of Inequality* Oxford University Press, 2024
- Kate Sherren, Gladman Thondhlana, & Douglas Jackson-Smith *Opening Windows: Embracing New Perspectives* and *Practices in Natural Resource Social Sciences* University Press of Colorado, 2024
- Robin Wall Kimmerer, The Serviceberry: An Economy of Abundance Milkweed Editions, 2024

Course Instructor: Dr.M.Prashanthi De

ELECTIVE 1 : ENVIRONMENTAL AND OCCUPATIONAL EPIDEMIOLOGY Course Code: 25PGEC01 Course Objectives: This course explores the theoretical foundations and methodological approaches in environmental and 0 occupational epidemiology. It equips students with the ability to assess exposure-disease relationships, evaluate environmental and 0 workplace hazards, and Appraises students to conduct interdisciplinary research with implications for public health policy and 0 practice. * Lecture-L *Tutorial-T *Practical-P *Credit-C L Т Р С 3 1 0 4 Per Week **Course Outcomes:** Upon successful completion of this course, students will be able to: KL Integrate epidemiologic principles with environmental and occupational health contexts K1. K3 1. 2. Apply advanced study designs and exposure assessment tools to investigate disease etiology. K2 Analyze environmental and occupational data using statistical software. 3. K3 Critically interpret research findings and synthesize evidence for public health action. K4, K5 4. 5. Design interventions and policy recommendations for risk mitigation. K6 Knowledge level: Remember (K1); Understanding (K2); Perform (K3); Analyse (K4); Synthesize (K5); Evaluate (K6) Mapping course outcomes with programme outcomes CO/PO **PO1 PO2 PO3 PO4** PO5 **PO6 PO7 PO8 PO9 PO10 CO1** S S Μ S S S Μ Μ Μ S **CO2** Μ S Μ S Μ L S S S Μ S L S S **CO3** Μ Μ Μ Μ Μ Μ **CO4** S Μ Μ S S Μ S S Μ Μ S S S S S S S S S **CO5** Μ Moderate Low Strong Assessment Methods: Test-T, Seminar-S, Assignment-A, Discussion-D Modules Т S А D Introduction: History and evolution of the discipline, Core concepts: hazard, Module I 1 **5** lectures exposure, dose-response, latency, risk, The exposome and the eco-social framework, Determinants of environmental/occupational health disparities, Legal and ethical dimensions in exposure research Module II Advanced Exposure Science and Assessment: Environmental exposure \checkmark pathways: air, water, soil, food, radiation, noise, Occupational exposure scenarios **6** lectures and hazard profiling, Biological monitoring: sample collection, biomarkers, omics integration, Use of JEMs, time-motion studies, remote sensing and personal sensors, Indoor and ambient environmental assessments Module III Study Design, Statistical Methods, and Causal Inference: Advanced designs: ~ ~ ~ **6** lectures nested case-control, case-crossover, time-series, panel studies, modeling complex exposures: mixtures, multipollutant models, cumulative exposures, Modeling latency and long-term exposure effects, Bias (healthy worker effect, surveillance bias), confounding, effect modification, and sensitivity analyses, Causal inference frameworks (Bradford Hill, counterfactuals, DAGs, G-methods) Module IV Health Outcomes and Mechanistic Pathways: Major diseases linked to ~ exposures: Respiratory: COPD, asthma, asbestosis, Cancer: occupational **6** lectures carcinogens (IARC Groups), environmental links, Neurological and developmental disorders (e.g., lead, pesticides), Cardiovascular, reproductive, and endocrine disruptions, Gene-environment and epigenetic interactions, Dose-

	response modeling and threshold estimation		
Module V 5 lectures	Risk Assessment, Management, and Policy Translation: Framework: Hazard identification, dose-response assessment, exposure assessment, risk characterization, Uncertainty analysis and probabilistic modelling, Regulatory frameworks: ILO, WHO, USEPA, REACH, CPCB, OSHA, Environmental and occupational surveillance systems (e.g., NOHS, PRTRs), Risk communication and public engagement	~	~
Current Trends 2 lectures	Contemporary Challenges and Futures: Climate-sensitive exposures (e.g., vector-borne diseases, heat stress), planetary health, One Health frameworks, and global burden estimation using GBD and IHME tools.		~
30 Lectures			

References:

- 1. Checkoway, H., Pearce, N., & Kriebel, D. 2004, *Research Methods in Occupational Epidemiology* (2nd Edition), Oxford University Press
- 2. Frumkin, H. (Ed.) 2016 Environmental Health: From Global to Local (3rd Edition), Jossey-Bass (Wiley)
- 3. Baker, D. & Nieuwenhuijsen, M. J. 2008, *Environmental Epidemiology: Study Methods and Application* Oxford University Press
- 4. Nieuwenhuijsen, M. J. (Ed.) 2015, *Exposure Assessment in Environmental Epidemiology* (2nd Edition) Oxford University Press
- 5. Friis, R. H., 2018, Essentials of Environmental Health (3rd Edition), Publisher: Jones & Bartlett Learning
- 6. LaDou, J. & Harrison, R. J. 2013, *Current Diagnosis & Treatment: Occupational & Environmental Medicine* (5th Edition), McGraw-Hill Education
- 7. Levy, B. S., Wegman, D. H., Baron, S. L., & Sokas, R. K. (Eds.) 2011, Occupational and Environmental Health: Recognizing and Preventing Disease and Injury (6th Edition), Oxford University Press
- 8. Boffetta, P., Nyberg, F. 2005, Cancer Epidemiology and Prevention in the Workplace, Springer
- 9. Schulte, P. A., & Hauser, J. E., 2012, *The Use of Biomarkers in Occupational Health Risk Assessment*, Wiley-VCH
- 10. World Health Organization (WHO), *Environmental Health Criteria Series*, WHO Press Various Years

Course Instructor: Dr.M.Prashanthi De

ELECTIVE 1 : WASTE MANAGEMENT STRATEGIES Course Code: 25PGEC01

Course Objectives:

- Understand the nature, classification, and generation trends of various waste streams (municipal, industrial, hazardous, biomedical, electronic, etc.).
- Analyze the environmental and public health impacts of improper waste management.
- Introduce scientific and engineering principles for waste minimization, treatment, recycling, recovery, and safe disposal.
- Evaluate policy frameworks, standards, and global best practices in waste control and sustainable resource use.

use.					~						-	-		
* Lecture-L	*Tutorial-T	*Pra	nctical-P	*(Credit-C						_	P	C	
Per Week	TT	C 1	1	C (1)		4 1	· ·11.1	11 4		3		0	4	
	omes: Upon suc													
	sify different typ											K1,		
	ine waste gener		-					-		1	`	K2,	<u>X</u> 4	4
-	n waste reductio					1.1				-	e).	K5		_
biomi	ate different wa ning).		10 CON	C C			TIDA	< 1	•	0		K5		
5. Interp	oret national and	internat	ional was	ste-relat	ed polici	ies and o	complia	nce requ	lirement	ts.		K1		
(K6)	evel: Remember	18 3	5°	0	-000	orm (K3); Analy	/se (K4)); Synthe	esize	(K5);	Evalı	iate	
	CO/PO PO1	PO2	-	PO4		PO6	PO7	PO8	PO9	PC)10			
	CO1 S	S	М	М	Μ	Μ	М	L	S	Μ				
C	CO2 M	S	S	S	Μ	Μ	Μ	Μ	S	Μ				
(CO3 S	S	М	S	S	S	S	М	S	S				
	CO4 M	S	М	М	М	Μ	S	М	S	Μ				
0	CO5 S	Μ	Μ	S	Μ	S	Μ	L	М	S				
	Stro	ng	N	Modera	te	Low								
Assessment N	Methods: Test-	0	ar-S.A	ssignm	ent- A. I	Discussi	ion- D	1.2						-
		10			Modules			1.30			Т	S	Α	
Module I	Water and v	vaste wat	ter treatm	nent tech	nnologie	s – Efflu	uent trea	tment to	echnolo	gies -	\checkmark		\checkmark	
5 lectures	Primary tre													
	equilization	tank, c	oagulatic	on, floc	culation,	design	s of cla	arifloccu	ulators,	flash				
	mixers sedi													
	process. Se													
	treatment, t	•				.		•						
	digestors. A		treatmen	nt – rev	erse osn	nosis, 10	on excha	inge, bi	ofilters,	Zero				
<u></u>	liquid disch	<u> </u>	1 /	1 .	1	1 • 1 /	<u> </u>	(1		1	1			+
Module II	Air Pollutio		•		•	•		•	• • •		-			
6 lectures	behavior, w													
	pollution co													
	and control													
	(<10µm, <2													
	Catalytic R		· · ·			traps, C	JNG eng	gines, B	S IV an	d BS				
	VI stage vel					4 1	<u> </u>		<u></u>	4.	/		_	+
Module III	Solid waste										\checkmark	\checkmark		
6 lectures	collection, s methods of	-	·		-	,			,					1
										•				1

	design and leachate management, incineration, pyrolysis, Secured/Scientific landfill, Soil and Groundwater contamination, Biological processes - composting, vermicomposting, anerobic digestion, organic waste convertor.			
Module IV 6 lectures	Recycling of solid waste, linear and circular economy, biomedical wastes, e - waste, plastic and Glass disposal, recycling, Conversion products, recovery of materials and metals, cost benefit analysis, 3R /4R/5R concept, Biomining: Bioleaching vs. biosorption vs. bioprecipitation, specific waste streams: industrial flyash, mine tailing, industrial waste, packaging wastes,	~	~	
Module V	Policies and initiatives: Swachh Bharat Mission (SBM) – Urban and Gramin,	\checkmark		~
5 lectures	Extended Producer Responsibility (EPR) Framework, National Action Plan for Waste Management, Urban Local Body (ULB) Reforms & Smart Cities Mission, National Green Tribunal (NGT) Orders and Monitoring, GOBAR-Dhan Scheme (Galvanizing Organic Bio-Agro Resources), National Electric Mobility Mission & Battery Waste Management Rules, 2022, Waste to Energy (WTE) and Composting Policies, Start-up India and Entrepreneurship in Waste Sector, Mission LiFE India, Swachh Bharat Mission 2.0 : legacy waste elimination by 2026			
Current	IoT-enabled bins, RFID tagging, and smart routing, bio-CNG plants, Producer			~
Trends	Responsibility Organizations (PROs) active in e-waste collection and			
2 lectures	refurbishing, bioplastics, green jobs,			
30 Lectures				

References:

- Information Resources Management Association (IRMA)Waste Management: Concepts, Methodologies, Tools, and Applications 2019 IGI Global
- Ravindra K., Nandy T., Khanna P. 2023, Sustainable Waste Management: Policies, Strategies, and Technologies Springer
- Saleh, H.M 2022, Waste Management: Principles, Practices, and Current Challenges Elsevier (Woodhead Publishing)
- Waldron, K 2020 Handbook of Waste Management and Co-Product Recovery in Food Processing (Vol 1 & 2), Woodhead Publishing (Elsevier) (2nd Edition)
- Sadhan Kumar Ghosh Circular Economy in Waste Management, Springer
- Velis, C.A., Iacovidou, E., Williams, I.D. 2019, Resource Recovery from Wastes: Towards a Circular Economy, Royal Society of Chemistry (RSC Publishing)
- Hussain, C.M., Mishra, S., Inamuddin 2020, Emerging Trends to Approaching Zero Waste, Elsevier
- Puri, M., et al. 2021, Bio-Valorization of Waste, Springer

25PGPP01 : Practical I- Environmental Quality Analysis

Course Objectives

- To familiarize students with the national and international standards for air, water, and soil quality.
- To equip students with the ability to collect representative samples of air, water, and soil for analysis.
- To teach students the laboratory and field methods for analyzing pollutants and other parameters in environmental samples.
- To develop the ability to interpret analytical results and assess whether environmental standards are met, and to identify sources of pollution.

	Modules
Module I	Introduction to Environmental Quality Analysis
	Overview of environmental pollutants (air, water, soil, noise)
	Methods of sampling and analysis
	• Overview of standards and regulations (e.g., EPA, WHO)
Module II	Air Quality Monitoring and Analysis
	• Collection of air samples using different techniques (e.g., passive samplers, pumps),
	Choosing sampling location
	• Determining concentrations of gaseous air pollutants (e.g., CO, NOx, SO2, particulate matter)
	• Use of equipment such as gas analyzers, particulate samplers, and air quality monitoring stations
	• Interpretation of air quality data and comparison with standards
	Air Quality Index
Module III	Water Quality Testing
	Physical Parameters: Temperature, turbidity, color, and conductivity
	 Chemical Parameters: pH, EC(μs), TDS(mg/l), Hardness(mg/l), Calcium Hardness (mg/l),
	Calcium (mg/l), Mg (mg/l), PH Alkalinity, Acidity, CO3 (mg/l), HCO3 (mg/l), Potassium(K)
	(mg/l), Sodium(Na) (mg/l), Chloride (mg/l), DO (mg/l), BOD (mg/l), COD (mg/l), Phosphate
	(mg/l), Nitrate (mg/l), Sulphate (mg/l), Iron (Fe) (mg/l), Fluoride (F) (mg/l),
	Sampling techniques (grab, composite, and automated)
	• Use of instruments like spectrophotometers, titration methods, and colorimeters
Module IV	Soil Quality Analysis
	• Determining soil properties pH, EC, Organic carbon, Na, K, Ca, mg, CEC, SAR.
	Micronutrients Toxic Metals- Heavy metals analysis in soil
	• Nutrient content (nitrogen, phosphorus, potassium)
	Soil sampling and preparation techniques
	• Soil contamination testing (e.g., pesticides, metals)
L	I

Course Outcomes

- Analyze environmental samples using standard protocols to assess water, air, and soil quality parameters.
- Apply appropriate sampling techniques and laboratory methods for measuring key indicators such as pH, turbidity, BOD, COD, TDS, and particulate matter.
- Interpret experimental data to evaluate environmental pollution levels and identify potential sources of contamination.
- Demonstrate proficiency in using analytical instruments such as spectrophotometers, gas analyzers, and flame photometers for environmental monitoring.
- Correlate laboratory findings with environmental standards (e.g., CPCB, WHO) to assess compliance and inform mitigation strategies.

SEMESTER II

510000

Course Instructor: Dr.R.Mohanraj

CORE 4 : ENVIRONMENTAL IMPACT ASSESSMENT Course Code: 25PGCC04

Course Objective:

- To understand the principles of environmental impact assessment and its evolution.
- To learn various steps and processes for environmental clearance of projects in India
- To identify potential hazards, quantify associated risks using various methods
- To understand the tools in environmental modeling for applications in EIA and Risk assessment

10	To understand the tools in environmental modering for approximations in Environmental										
* Lecture-	L *Tutorial-T *Practical-P *Credit-C	L	T	Р	C						
Per Week		3	1	-	4						
Course Ou	tcomes:			k	ΧL						
1.	Students gain an understanding of how environmental impact assessment is conduc	cted		K1							
2.	Perform EIA tools in the engineering project management decision-making proces	s		K2 &	K3						
3.	Proficient to analyse an environmental impact assessment, review and critically a an environmental impact statement	nal	yze	K4,]	K6						
4.	Applying mathematical models for environmental impact prediction			K4 &	K5						
5.	Capable of evaluating environmental impact assessment of development projects			K4 &	& K6						

Knowledge level: Remember (K1); Understanding (K2); Perform (K3); Analyse (K4); Synthesize (K5); Evaluate (K6)

Mapping course outcomes with programme outcomes

0			1 0								
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	S	Μ	Μ	S	S	Μ	Μ	L	S	S
	CO2	М	Μ	S	S	Μ	Μ	S	Μ	S	Μ
	CO3	S	L	Μ	S	S	Μ	Μ	L	Μ	S
	CO4	М	Μ	S	Μ	Μ	L	S	Μ	S	Μ
	CO5	S	Μ	Μ	S	S	S	S	Μ	S	S
		Strong			Μ	oderate				Low	

Assessment M	Iethods: Test-T, Seminar-S, Assignment-A, Discussion-D				
	Modules	Т	S	A	D
Module I 5 lectures	Introduction to EIA, Concept of EIA, Evolution of EIA, EIA practice in India, EIA Notifications 1992, 1994, 1997, 2009 and 2016of MoEF, Coastal Regulation Zone Notifications, Project Screening in EIA, Nodal agencies and central and state, Defining and Examining Scope, Objectives and Alternatives in EIA Projects, Project Planning and processes, Baseline information, Impact prediction, decision making	~		~	~
Module II 6 lectures	Types of EIA, Rapid ElA, Comprehensive EIA, Strategic EIA, Data Collection, Ecological Impacts, Environmental Impacts (Air, water, Land Noise), Socioeconomic and cultural Impacts, Health impacts, Prediction of Impacts; Methodologies (Checklists, Matrices, Networks, Overlays and GIS, Cost Benefit analysis, OGC tools, Environmental Management Plan (EMP).	~			
Module III 6 lectures	Preparing and Writing of Environmental Impact Statements (EIS), Computer aided techniques, Reviewing EIA/EIS, Use of EIA in Public participation and decision making, EIA in Sustainable development. EIA case studies: Mining projects, Hydroelectric projects, Nuclear power projects, Thermal power projects, Refineries, Cement, Metallurgy.	~	~		~
Module IV 6 lectures	Environmental Risk Assessment and Management, azard Identification, Hazard Characterization. Risk Assessment, Risk Screening & Prioritization, Qualitative Risk Assessment. Risk Management. Human Health Risk Assessment, Exposure Assessment, Dose-Response Predictions. Ecological	~	~		

	Risk Assessment, Problem Identification, Risk Analysis, Risk Characterization, Social aspects of risk.		
Module V 5 lectures	Modeling tools in risk assessment. Modeling and simulation, ModelingPrinciples and Programming, Introduction to Stella and spreadsheetmodeling. MATLAB, Specific Environmental models, Gausian model,Modelling pollution concentration in lake and stream Models. Air quality andemission dispersion models. Computerized models of urban land use,transportation and environment in the development. Simple climate changemodels. Using <i>R studio</i> in models. Machine Learning approaches in EIA	~	~
Current Trends 2 lectures	Enhancing the quality of EIAs in sensitive areas, Environmentally-Extended Input-Output (EEIO) Analyses, Simulation-based integrated assessment models, such as E3ME-FTT-GENIE		~
30 Lectures			

References

- Environmental Impact Assessment, A. K. Shrivastava, APH Publishing Corporation, New Delhi, 2003
- Environmental Impact Assessment, S. A. Abbasi and D. S. Arya, Discovery Publishing House New Delhi, 2004
- A Hand book of Environmental Impact Assessment, V.S. Kukarni, S.N. Kaul, R.K. Trivedi, Scientific Publishers, Jodhpur, 2002
- A Handbook of Environment Impact Assessmentbooks.google.co.in > books
- R.K. Trivedy, V.S. Kulkarni, S.N. Kaul (2019) A Handbook of Environment Impact Assessment. Scientific Publishers
- Perspectives on Strategic Environmental Assessment, Edited Maria Rosario, Lewis Publishers, USA, 2000.
- Kevin Hanna (2022) Routledge Handbook of Environmental Impact Assessment, Taylar & Francis Publishers

Course Instructor: Dr. N.D.Shrinithivihahsh

CORE 5 : ENVIRONMENTAL LAW, POLICIES AND ETHICS COURSE CODE: 25PGCC05

Course Objectives:

Ethical foundation is a prerequisite for environment policy formulation. This paper introduces the basics of environmental ethics and theories. Environmental policies in India, global policy interventions are the focus of this course. Students learn the formulation, instruments strategies and implementation of environmental policies.

* Lecture-	L *Tı	utorial-T	*Pra	ctical-P	*(Credit-C	1	•		L	Т	P	•	
Per Week							- -			3	1	0		4
Course O		At the en	d of the	course,	the stuc	dents wi	ll be ab	le to		•	I		KL	
1. De	monstrate l regulatio	in-depth	knowled	ge of na	tional ar	nd intern	ational	environ		,	aties,	K	[
	tically ev						· ·				•	K2	2 & K3	
3. Int	egrate eth uring that	ical theor	ries and	framew	orks int	o the ar	nalysis o	of envir	-			K	4	
4. For	mulate in Illenges w	novative	and sust	tainable	policy i	recomm	endation	ns to ad		vironm	ental	K.	5	
5. As	sess and e e studies,	nsure con	npliance	with env	vironme	ntal law	s and et	hical sta	indards i		vorld	K	5	
Knowledg K6)		4	3		12	896	orm (K.	3); Anal	yse (K4); Syntl	nesize	e (K5); Eva	lua
/Iapping	course ou							3	10					
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10		
	CO1	S	L	Μ	S	Μ	Μ	Μ	L	Μ	S			
	CO2	Μ	L	L	Μ	S	Μ	Μ	L	Μ	S			
	CO3	Μ	L	L	Μ	Μ	S	Μ	L	Μ	S			
	CO4	S	L	М	Μ	S	S	S	L	Μ	S			
	CO5	S	Μ	S	S	S	Μ	Μ	L	S	S			
		Strong	2	Μ	Ioderate	e	Low							
ssessmer	t Method	ls: Test-T	, Semina	ar- S, As	ssignme	nt- A, D	iscussio	on- D	E/					
			Sin		Modu	les		631		'	Т	S	А]
		- Conce			ories - c	onseque				gical	T ✔	S	A ✓]
	theory	- virtue	ethics - s	ituation	ories - c ethics -	onseque feminis	t ethics	- Illustr	ation ca	gical ses -	T ✔	S	A ✓]
	theory DPGs	- virtue	ethics - s piracy –	ituation GMO	ories - c ethics - – Sten	onseque feminis n cell 1	t ethics research	- Illustr . Envir	ation ca onment	gical ses - and	T ✓	S	A ✓	
lectures	theory DPGs constit Status	- virtue of - Biop tution of D of Enviro	ethics - s piracy – India - E pnment -	ituation GMO nvironm Duty to	ories - c ethics - – Sten ental leg Protect	onseque feminis 1 cell 1 gislature Environ	t ethics research Machin ment.	- Illustr . Envir nery - C	ation ca onment onstitut	gical ses - and onal	T	S	A ✓]
lectures	theory DPGs constit Status Laws	- virtue of - Biop tution of of Enviro on Water	ethics - s piracy – India - E pnment - Pollutio	ituation GMO nvironm <u>Duty to</u> n Contr	ories - c ethics - – Sten ental leg Protect rol - Poy	onseque feminis n cell 1 gislature Environ wers of	t ethics research Machin ment. Central	- Illustr . Envir nery - C and Sta	ation ca onment constitut	gical ses - and onal ition	r ✓	S ✓	A ✓	
lectures	theory DPGs constit Status Laws Contro	- virtue of - Biop tution of of Enviro on Water of Boards	ethics - s piracy – India - E <u>pnment -</u> Pollutio - Preve	ituation GMO nvironm <u>Duty to</u> n Contr ntion ar	ories - c ethics - – Sten eental leg Protect ol - Pov ed Contr	onseque feminis n cell 1 gislature Environ wers of col of W	t ethics research Machin ment. Central Vater Po	- Illustr . Envir nery - C and Sta llution	ation ca conment constitut ate Pollu - Closu	gical ses - and onal ution re or	Γ ✓	S ✓	A ✓	
lectures	theory DPGs constit Status Laws Contro Stoppa	- virtue of - Biop tution of of Enviro on Water	ethics - s biracy – India - E <u>onment -</u> Pollutio - Preve ter and E	ituation GMO nvironm <u>Duty to</u> n Contr ntion ar Electricit	ories - c ethics - - Sten ental leg Protect ol - Pov ol - Pov d Contr y Supply	onseque feminis n cell 1 gislature Environ wers of col of W y - Citiz	t ethics research Machin <u>ment.</u> Central Vater Po en Suit I	- Illustr . Envir nery - C and Sta llution Provisio	ation ca onment constitut ate Pollu - Closum on - Pow	gical ses - and onal ution re or er of	Γ ✓	S ✓	A ✓	
lectures Aodule II lectures	theory DPGs constit Status Laws Contro Stoppa Centra Gover	- virtue of Biop tution of I of Enviro on Water ol Boards age of Wa al Goverr nment to	ethics - s piracy – India - E <u>ponment -</u> Pollutio - Preve ter and E iment to Supersec	ituation GMO nvironm <u>Duty to</u> n Contr ntion an Clectricit Supers le the St	pries - c ethics - Sten ental leg Protect ol - Pov d Contr y Supply sede the ate Boar	onseque feminis n cell 1 gislature Environ wers of col of W y - Citiz contra	t ethics research Machin <u>ment.</u> Central Vater Po en Suit I I Boarc	- Illustr . Envir nery - C and Sta Ilution Provisio 1 - Pov	ation ca conment constitut: ate Pollu - Closur on - Pow ver of	gical ses - and onal ition re or er of State	Γ ✓	S 🗸	A ✓	
lectures Aodule II lectures Aodule II	theory DPGs constit Status Laws Contro Stoppa Centra Gover	- virtue of - Biop tution of I of Envired on Water ol Boards age of Wa al Goverri nment to on Air P	ethics - s piracy – India - E <u>poment -</u> Pollutio - Preve ter and E ment to Supersec Pollution	ituation GMO nvironm Duty to n Contr ntion ar Electricit Supers le the St Control	pries - c ethics - - Sten nental leg Protect ol - Pov d Contr y Supply sede the ate Boar - Pow	onseque feminis n cell 1 gislature Environ wers of col of W y - Citiz col of W y - Citiz contra cd. ers and	t ethics research Machin <u>ment.</u> Central Vater Po en Suit I I Boarco Function	- Illustr . Envir nery - C and Sta llution Provisio 1 - Pov	ation ca onment constitut: ate Pollu - Closur on - Pow ver of Boards -	gical ses - and onal ution re or er of State	Γ ✓ ✓	S ✓	A ✓	
lectures Aodule II lectures Aodule II	theory DPGs constit Status Laws Contro Stoppa Centra Gover I Laws Polluti	- virtue of - Biop tution of 1 of Enviro on Water ol Boards age of Wa al Govern <u>nment to</u> on Air P ion Cont	ethics - s piracy – India - E ponment - Pollutio - Preve ter and E ment to <u>Supersec</u> Pollution rol Area	ituation GMO nvironm Duty to n Contr ntion an Electricit Supers le the St Control s - pol	pries - c ethics - - Sten nental leg Protect ol - Pov d Contr y Supply sede the ate Boar - Pow	onseque feminis n cell 1 gislature Environ wers of col of W y - Citiz col of W y - Citiz contra cd. ers and	t ethics research Machin <u>ment.</u> Central Vater Po en Suit I I Boarco Function	- Illustr . Envir nery - C and Sta llution Provisio 1 - Pov	ation ca onment constitut: ate Pollu - Closur on - Pow ver of Boards -	gical ses - and onal ution re or er of State	T ✓	S ✓	A ✓	
o lectures Module II o lectures Module II o lectures	theory DPGs constit Status Laws Contro Stoppa Centra Gover I Laws Polluti Emiss	- virtue of - Biop tution of I of Envire on Water on Water on Water on Water age of Wa al Govern <u>nment to</u> on Air P ion Cont ion of Air	ethics - s piracy – India - E ponment - Pollutio - Preve ter and F ment to <u>Supersec</u> Pollution rol Area Pollutar	ituation GMO nvironm Duty to n Contr ntion an Clectricit Supers le the St Control s - pol tts	pries - c ethics - Sten ental leg Protect ol - Pov d Contr y Supply sede the ate Boar - Powo lution c	onseque feminis n cell 1 gislature Environ wers of col of W y - Citiz e Centra rd. ers and control	t ethics research Machin ment. Central /ater Po en Suit I 1 Boarco Functico strategio	- Illustr . Envir nery - C and Sta llution Provisio 1 - Pov ons of H es - Pr	ation ca onment constitut: ate Pollu - Closur on - Pow ver of Boards - ohibitio	gical ses - and onal ition re or er of State Air n of		S ✓	A ✓ ✓	
Module I 5 lectures Module II 6 lectures Module II 6 lectures Module IV 6 lectures	theory DPGs constit Status Laws Contro Stoppa Centra Gover Laws Polluti Emissi	- virtue of - Biop bution of D of Envirco on Water ol Boards age of Wa al Goverr <u>nment to</u> on Air P ion Cont ion of Air pomment (P	ethics - s piracy – India - E ponment - Pollutio - Preve ter and E ment to Supersec Pollution rol Area Pollutar	ituation GMO nvironm <u>Duty to</u> n Contr ntion an Electricit Supers le the St Control s - pol tts	pries - c ethics - - Sten ental leg Protect ol - Pow d Contr y Supply sede the ate Boar - Pow lution c	onseque feminis n cell 1 gislature Environ wers of col of W y - Citiz contrate ers and control	t ethics research Machin <u>ment.</u> Central Vater Po en Suit I I Boarc Function strategie Central	- Illustr . Envir nery - C and Sta llution Provision 1 - Pov ons of H es - Pr Govern	ation ca onment constitut: ate Pollu - Closur on - Pow ver of Boards - cohibitio ment - I	gical ses - and onal ution re or er of State Air n of egal		S ✓	A ✓ ✓	
5 lectures Module II 5 lectures Module II 5 lectures	theory DPGs constit Status Laws Contro Stoppa Centra Gover I Laws Polluti Emissi 7 Enviro Regula	- virtue of - Biop tution of I of Envire on Water on Water on Water on Water age of Wa al Govern <u>nment to</u> on Air P ion Cont ion of Air	ethics - s piracy – India - E ponment - Pollutio - Preve ter and F ment to <u>Supersec</u> Pollution rol Area Pollutar Protectior Hazardou	ituation GMO nvironm Duty to n Contr ntion an Clectricit Supers le the St Control s - pol nts n) Act 19 s Substa	Pries - c ethics - Sten ental leg Protect ol - Pow d Contr y Supply sede the ate Boar - Pow lution c 986 - Pow ance - H	onseque feminis n cell 1 gislature Environ wers of col of W y - Citiz control ers and control wers of lazardou	t ethics esearch Machin ment. Central Zentral I Boarc Functic strategic Central s Waste	- Illustr . Envir nery - C and Sta llution Provisio 1 - Pov ons of I es - Pr Govern s (Man	ation ca onment constitut ate Pollu - Closur on - Pow ver of Boards - ohibition ment - I agement	gical ses - and onal ition re or er of State Air n of egal and		S ✓	A ✓ ✓	

	rules-2000. Bio-medical wastes (Management and Handling) Rules 1999 -			
	Coastal Regulation Zone Notification-1991.			
Module V	International Environmental conventions - Montreal Protocol - Earth	\checkmark	\checkmark	\checkmark
5 lectures	Summit - Agenda 21 - Biodiversity Act, 2002 - Kyoto Protocol - Copenhagen			
	Summit 2009 - Millennium Development Goals - Basel convention. Paris			
	Agreement, Global Climate Action Plan, Review of NAAP and SAAP			
Current	Enhanced Environmental Regulations, Climate Change Litigations,			\checkmark
Trends	Recognition of the Right to a Healthy Environment, Re evaluation of Land			
2 lectures	Acquisition Laws			
30				
Lectures				

References

- ★ Gurdip Singh, 2005. <u>'Environmental Law in India'</u>, Macmillan India Ltd, New Delhi 2.
- * BalaKrishnamoorthy, 2005. Environmental Management, Prentice Hall of India Private Limited, New Delhi.
- * S.K. Agarwal, 1997. Environmental Issues and themes, APH Publishing Corporation, New Delhi.
- John O Neil. R. Kerry Turner and Ian J. Batemaned ed., 2001. <u>Environmental Ethics and philosophy</u>, An Elgar Reference collection, USA.

Course Instructor: Dr.M.Prashanthi Devi

CORE (CHOICE) 6: INDUSTRIAL SAFETY AND HEALTH COURSE CODE: 25PGCC06 (Formerly Industrial Pollution and Waste Management)

Course Objectives: To understand hazards and hazardous and hazardous materials in occupational environment, learn about the methods to monitor the wastes, sources and control them. To understand the human exposure routes to toxic substances and materials and to know about various surveillance programs to manage hazards

* Lecture-	L *Tutorial-T *Practical-P *Credit-C	L	Т	P	C
Per Week		3	1	0	4
Course Ou	itcomes:]	KL
1.	Demonstrate a comprehensive understanding of industrial health haze practices, and safety regulations	ards,	safety	K1	
2.	Identify common occupational health risks and their impact on workers' productivity.	' healt	h and	K2 &	х K3
3.	Conduct qualitative and quantitative risk assessments for various industrial	opera	tions.	K4	
4.	Implement and manage safety management systems (SMS) and program compliance with safety standards and regulations (OSHA, ISO 45001).	ns to e	ensure	K5	
5.	Design and manage waste management systems to meet environmenta requirements	ıl and	legal	K6	

Knowledge level: Remember (K1); Understanding (K2); Perform (K3); Analyse (K4); Synthesize (K5); Evaluate (K6)

Mapping course outcomes with programme outcomes

	Strong			loderate	Low						
CO5	М	S	М	М	S	М	М	М	S	М	
CO4	S	М	S	S	S	М	S	L	S	S	
CO3	М	М	S	М	S	М	S	L	S	М	
CO2	S	L	М	L	S	М	М	L	М	S	
CO1	S	М	М	М	S	М	М	L	М	S	
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
course outcomes with programme outcomes											

Assessment Methods: Test-T, Seminar- S, Assignment- A, Discussion- D

	Modules	Т	S	Α	D
Module I	Industrial Safety Management History of Safety movement in India and	\checkmark			\checkmark
5 lectures	abroad – Evolution of modern safety concept-legal, Humanitarian,				
	economic and social considerations - Definition of accident, Incident,				
	Injury, Hazards, Unsafe act/ Condition, Accident prevention- Legislations				
	in Safety & Health – The Factories Act & relevant state rules- Tamil Nadu				
	Safety Officers Rules - Role of safety committee - Safety policy, budgeting				
	for safety, Hazard identification and risk assessment techniques, Overview				
	of Bureau of Indian standards in Safety,				
Module II	Safety education, training, and employee participation- Importance of	\checkmark	\checkmark	~	
6 lectures	training, identification of training needs, training methods, program and				
	training evaluation - Internal and external Training, seminars, conferences,				
	Induction Training, Toolbox talks, E-Learning tools				
	Role of government agencies and Industry forums in safety training -				
	Importance of employee participation - Role of trade unions in Safety,				
	Health and Environment - Organizing suggestions and evaluation of				
	feedback system - Safety competitions - Modern methods of Safety				
	Promotion - awards, competitions, celebrations, safety posters, safety				
	displays, safety pledge, safety incentive scheme, safety campaign.				

		-			
Module III 6 lectures	 Fire safety - Fire properties of solid, liquid and gases - fire spread - toxicity of products of combustion - combustion characteristic- flash point, fire point, ignition temperature, LFL, UFL, flame propagation properties of explosive, propellent vapour clouds - flash fire - jet fires - pool fires - unconfined vapour cloud explosion, shock waves - auto-ignition - boiling liquid expanding vapour explosion - case studies - Flixborough, Mexico disaster, Bhopal disaster, Piper Alpha, and Bombay Victoria dock ship explosions. Sources of ignition - fire triangle - principles of fire extinguishing - active and passive fire protection systems - various classes of fires - Types of fire extinguishers - hydrant pipes - hoses - monitors - fire drills Industrial fire protection systems Sprinkler-hydrants-stand pipes - alarm and detection systems. Other suppression systems - CO2 system, foam system, dry chemical powder (DCP) system, halon system, Inergen, FM200, Disaster Management - Onsite & off site Emergency plan 		~		V
Module IV	Accident Prevention, Investigation and Reporting - Theories of accident	1	./	1	
6 lectures	causation, Direct and Indirect cost analysis, Principles of Accident Prevention, reportable and non-reportable accidents, reporting to statutory authorities - accident investigation methodology, Recommended practices for compiling and measuring work injury – Calculation of accident indices, frequency rate, severity rate as per IS 3786	•	•	•	
Module V 5 lectures	Occupational Health – Physical Hazards - Noise, Vibration. Ionizing radiation, non-ionizing radiations, heat stress - Chemical Hazards - Recognition of chemical hazards-dust, fumes, mist, vapour, fog, gases, types, concentration- Biological and ergonomical hazards- Classification of Bio-hazardous agents – examples, bacterial agents, viral agents, fungal, parasitic agents, infectious diseases-Ergonomics and human factors engineering - Work Related Musculoskeletal Disorders – Carpal Tunnel Syndrome CTS- Tendon pain disorders of the neck- back injuries. Employee health program Pre-employment and post-employment medical examinations – occupational related diseases, levels of prevention of diseases, notifiable occupational diseases such as silicosis, asbestosis, pneumoconiosis, siderosis, anthracosis, aluminosis and anthrax, Man as a system component – allocation of functions – Industrial toxicology, local, systemic and chronic effects, temporary and cumulative effects, carcinogens entry into human systems -stress – strain – fatigue – rest pauses – shift work – personal hygiene.				~
Current	Industrial Exposure: Hands-on experience with safety equipment and				√
Trends 2 lectures	simulation of industrial scenarios. Industry Internship : Exposure to real- world industrial safety practices. Independent research on a relevant topic in industrial safety and hazard management.				

References

- Prof. Sunil S.Rao, R.K.Jain (2000) Industrial Safety, Health and Environment Management Systems 2024 KHANNA PUBLISHERS
- Dr K U Mistry (2022) FUNDAMENTALS OF INDUSTRIAL SAFETY AND HEALTH by Vol 1 Shyamaraj Global Commerce
- Rajan Nijhawan 1st Edition (2024) Waste Management Law with Guidelines, ILBCO Publishers

- Hazardous Materials Classification Systems", In: *EPA Handbook of Chemical Hazard Analysis Procedures*; 1989; (301) 447-1068
- Air Monitoring" (chap. 7) from: NIOSH/OSHA/USCG/EPA; Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities

Course Instructor: Dr.M.Prashanthi Devi

CORE (CHOICE) 6: ENVIRONMENTAL INFORMATICS AND SPATIAL DATA MODELLING COURSE CODE: 25PGCC06

Course Objectives: To introduce the concept of Applied Informatics and supports methods and procedures of spatial information technologies which contribute to environmental data analysis and environmental protection

•							montar	iuu unu								
* Lectu		Tutorial-T	*Prac	tical-P	*Cre	dit-C			L		T	P		C		
Per We									3	5	1	0		4		
	Outcome		r		· 1	:	1	4 1	. .	•	1	17.1	KL			
1.	linka	course of ages and to it is meas	o estimat										, K2	2		
2.		students g 1 spatial da		ledge of	n descrij	ptive, ex	planator	ry, and i	inferenti	al an	alyses	K3	,			
3.		course is onted, risk-i	•	-					that are	conse	ensus-	- K5, K6				
4.		ers spatial puting plat							ented in	n dif	ferent	K2	2, K5	,		
5.	Stud	form interdisciplinary analyses that can inform decision making and policy										K5	5, K6	1		
Knowl Evaluat	0	el: Remem	iber (K1); Unde	erstandin	g (K2);	Perform	n (K3);	Analys	se (K	(4); Sy	Inthe	size	(K5		
Mappir	ng cours	e outcor	mes wit	th pro	gramm	ne outo	comes		E E	1						
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 P	O10				
	CO1	Μ	L	L	Μ	Μ	Μ	S	Μ	S	N	1				
	CO2	М	L	Μ	S	Μ	Μ	S	S	S	N	1				
	CO3	Μ	L	S	S	Μ	Μ	S	Μ	S	N	1				
	CO4	Μ	L	Μ	Μ	Μ	Μ	S	S	S	N	1				
	CO5	Μ	Μ	Μ	Μ	S	Μ	Μ	S	S	N	1				
		Strong	g	N	Ioderat	e		Low								
Assessr	nent Met	hods: Test	t-T, Semi	inar- S, A	Assignm	ent- A,	Discussi	on- D	13	1						
			120		Mod	lules			20		Т	S	А	D		
Module		Introducti									\checkmark			v		
5 lectur	res	componer														
		managem			-	-		•		<u> </u>						
		archiving, informatio														
		modeling		•			•									
		physical v				•		•								
Modul	e II	Geospatia									1	1	\checkmark	-		
6 lectur	res	benefit an	•	,	-		0,	· ·								
		Modeling														
		Watershee														
		extraction, landform mapping, Introduction to Modeling of														
		Geospatial Processes, Trend AnalysisIntroduction to environmental informatics , Topics of environmental												+		
Module											\checkmark	\checkmark	\checkmark	۷		
6 lectu	res	informatio				•										
		environme														
		data analysis, Scales of operation of environmental data, Re- sampling of environmental data, Data Intensive Science and												1		
		Jamping			tal uala	i, Dali	a miens		icite a	nu						

Importance of Environmental Taxonomy

Module IV 6 lectures	Environmental simulation models, Modelling procedure, Types and classification of mathematical models, Process identification, An eutrophication simulator, Environmental decision support systems, Introduction, Decision support on a river basin scale, Working levels of a DSS, Applications of DSS, Models using STELLA, Digital Earth and Big Data, GeoAI models and IoT	~	~	~	
Module V 5 lectures	Applications of earth observations to Environmental Planning and Management, forestry, wildlife, environment and natural resources including water, land and atmosphere. Case Studies	~		~	~
Current Trends 2 lectures	Artificial intelligence and expert systems for environmental applications, Computer graphics and visualization for environmental decision support				~
30 Lectures					

References:

- * Singh, R.B, *Environmental Monitoring: Applications of Remote Sensing and GIS*, 1991, Geocartho International Centre, Hongkong
- * Muralikrishna, I.V, Remote Sensing and GIS for Environmental Planning, 1994, Tata McGraw Hill, New Delhi
- * Robert Scally, GIS for Environmental Management, 2006, ESRI press, USA
- * Bettinger, Wing and Wing, Geographic Information Systems: Applications in Forestry and Natural Resources Management, 2004, McGraw Hill, NY
- Fischer.M.M and Nijkamp, P. Geographic Information Systems Spatial Modeling and Policy Evaluation, 1993, Springer Verlag, NY.
- Estes J.E , and Senger, L.W, *Remote Sensing Techniques for Environmental Analysis*, 1994, Hamilton Publishers, NJ.
- * Gunther, Oliver. (2001). Environmental Information Systems. Published by Springer
- Michener, William (2000). Ecological Data: Design, Management and Processing (Ecological Methods and Concepts) Published by Wiley-Blackwell; 1 edition (February 17, 2000)
- P. K. Paul, Amitava Choudhury, Arindam Biswas, Binod Kumar Singh (2022) Environmental Informatics: Challenges and Solutions, Springer Publications
- Ahmed M. Eldosouky, Luan Thanh Pham, David Gomez-Ortiz, Saulo Oliveira, Ahmed Henaish, Frontiers Media SA (2024) Advanced Methods for Interpreting Geological and Geophysical Data, Frontiers Book Series

Course Instructor: Dr.N.D.Shrinithivihah

ELECTIVE 2 : URBAN ENVIRONMENTAL SUSTAINABILITY: ISSUES AND STRATEGIES Course Code: 25PGEC02

Course Objectives:

- To understand the critical environmental challenges associated with urbanization.
- To explore sustainable strategies for addressing urban environmental issues.
- To evaluate policy frameworks and innovative technologies for sustainable urban management.

* Lecture-L *Tutorial-T *Practical-P *Credit-C	L	T	P	С
Per Week	3	1	0	4
Course Outcomes:				KL
1. Identify key environmental challenges in urban areas.			K1,	K2
2. Analyze the impacts of urbanization on ecosystems and resources.			K3	
3. Evaluate strategies for sustainable urban management.			K6	
4. Examine the role of policies and governance in urban sustainability.			K2,	K5
5. Propose innovative solutions for sustainable urban development.			K5,	K6

Knowledge level: Remember (K1); Understanding (K2); Perform (K3); Analyse (K4); Synthesize (K5); Evaluate (K6)

Mapping course outcomes with programme outcomes

ping vo	uise outeo	mes men	prosra	mine ou	reconnes		111	0.				
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
	CO1	Μ	L	L	Μ	S	Μ	Μ	Μ	S	S	
	CO2	М	L	Μ	Μ	S	Μ	Μ	Μ	S	S	
	CO3	М	L	Μ	S	S	Μ	S	Μ	S	S	
	CO4	S	L	Μ	S	Μ	Μ	Μ	L	Μ	S	
	CO5	S	Μ	Μ	Μ	S	S	S	Μ	S	S	
		Strong		Μ	oderate		Low					

TRU 40

Assessment Methods: Test-T, Seminar- S, Assignment- A, Discussion- D

Module I	Modules	Т	S	A	D
5 lectures	Introduction to Urban Environmental Issues: Urbanization trends and their environmental implications. Key challenges: air pollution, water scarcity, waste management, and urban heat islands. Impacts of urban sprawl on biodiversity and green spaces.	~		~	~
Module II 6 lectures	Urban Resources and Ecosystem Services: Water management in urban areas: Challenges and solutions. Energy consumption and renewable energy in cities. Role of urban green infrastructure in enhancing ecosystem services.	~			
Module III 6 lectures	Strategies for Sustainable Urban Development: Sustainable urban planning and design principles. Smart cities and their role in resource efficiency. Circular economy approaches: Waste-to-resource models and zero-waste cities.	~	~		~
Module IV 6 lectures	Policy Frameworks and Governance: Urban environmental policies at the national and global levels. Role of public-private partnerships in sustainable urban management. Community participation and citizen engagement in urban governance.	~	~		
Module V 5 lectures	Technological Innovations for Urban Sustainability: Role of GIS and remote sensing in urban environmental monitoring. Smart mobility and transportation solutions. Innovations in urban agriculture and vertical farming for food security.	~			~
Current Trends 2 lectures	Current Contours (<i>Not for Final Exam, only for Discussion</i>): Urban resilience in the face of climate change and natural disasters. Urban carbon footprint: Measurement and reduction strategies. Case studies: Successful urban sustainability initiatives from around the world.				~
30 Lectures					

References:

- UN-Habitat. (2020). *World cities report 2020: The value of sustainable urbanization*. United Nations.
- Newman, P., Beatley, T., & Boyer, H. (2017). *Resilient cities: Overcoming fossil fuel dependence*. Island Press.
- Girardet, H. (2015). *Creating regenerative cities*. Routledge.
- Alberti, M. (2016). *Cities that think like planets: Complexity, resilience, and innovation in environmental sustainability*. University of Washington Press.

ELECTIVE 2 : INDUSTRIAL POLLUTION, MANAGEMENT AND REMEDIATION Course Code: 25PGEC02

Course Objectives:

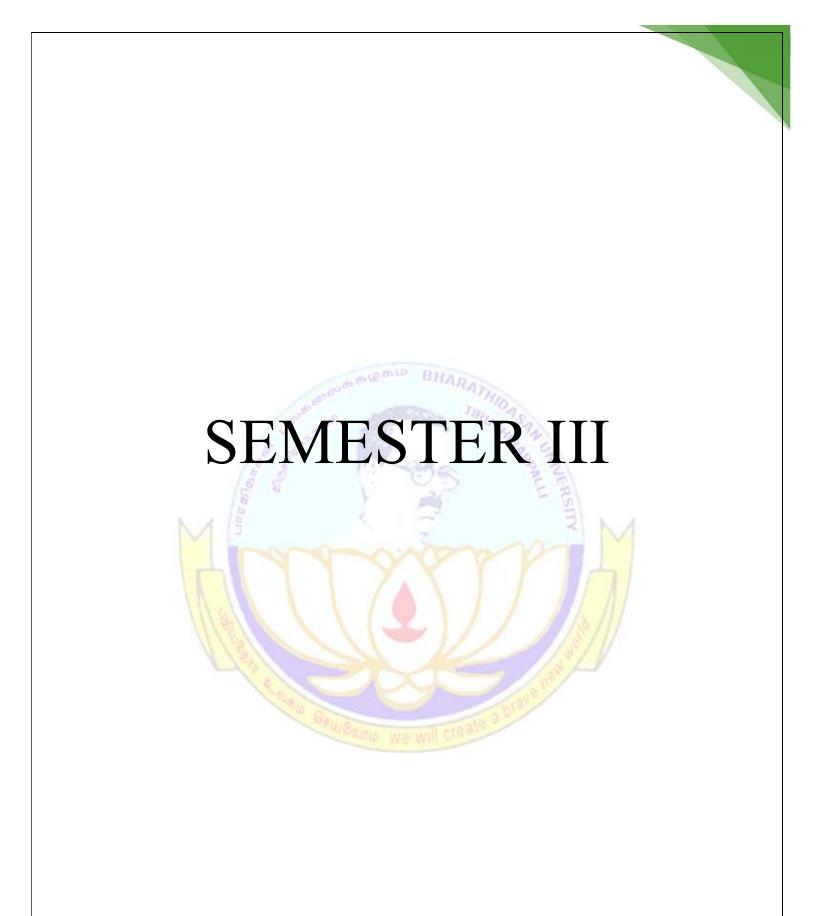
- Understand the sources, types, and environmental impacts of industrial pollution (air, water, soil, and solid waste).
- Gain knowledge of pollutant behavior, fate, and toxicity in different environmental matrices.
- Explore conventional and advanced methods for industrial waste treatment and pollution control.
- Learn principles and applications of bioremediation, phytoremediation, and other eco-friendly remediation technologies.
- Develop critical thinking on environmental risk assessment and pollution monitoring.

Dev * Lecture-1	velop critica	il thinking	g on env * Pract			assessme edit-C	ent and	pollutio	n monit	oring.	Т	P	(r
Per Week		11ai-1	1140	icai-i		cuit-C				3	1	0	4	
Course Ou	tcomes:									U	-		KL	
	tify and clas	ssify diffe	erent typ	es of inc	lustrial p	ollutant	s and th	eir sour	ces.				K1	
	lyze the env									nts.			K4	
3. Eval	uate variou	s pollutio	on contro	l and ren	nediatio	n techno	ologies l	based of	n industi	y type.			K5	5
4. App	ly concepts	of micro	bial and	phytore	mediatio	n to real	l-world	pollutio	n scena	rios.			K3	
	gn and prop		100				N						K6	
	0 1 1		J	857	1000			No.			• /1/			
Knowledge (K6)	e level: Rem	nember (k	(I); Und	erstandi	ng(K2)	; Perform	n (K3);	Analys	e (K4); i	Synthes	ize (K	.5); E	valuat	te
`		15	3	P		AP		PN.	2					
Mapping c							DOC	DOF	DOG	DOA	DO	10		
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	010		
	CO1	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	Μ			
	CO2	S	S	Μ	S	S	Μ	Μ	Μ	S	S			
	CO3	Μ	S	S	Μ	Μ	Μ	S	S	S	Μ			
	CO4	M	S	~ M	Μ	Μ	M	S	S	S	M			
	CO5	S	S	S	Μ	Μ	S	S	S	S	S			
		Strong	g		Mode	rate		L	ow					
Assessmen	t Methods:	Test-T,	Seminar	- S, Ass	ignmen	t- A, Di	scussion	1- D 🥖	3/					
Module I		19	1		Module		1	10	1		Т	S	А	D
5 lectures	Industrial										\checkmark		\checkmark	\checkmark
	vapour, fu													
	and classif metals); A			the second se			· •		•	-				
	paper, pha			•			·			·				
	Bhopal ga					,				•				
Module	Exposure										\checkmark			
II	Hazard di	amond a	and num	bering	system;	four fa	cets of	Indust	rial Hy	giene;				
6 lectures	importance	e of C	Certified	safety	profes	sional,	Risk	assessn	nent: h	azard				
	identificat										_	_		
Module	Principles										\checkmark	\checkmark		\checkmark
	chemical De duction													
6 lectures	Reduction Cement-ba													
	Integration			· •	,		0		ung ag	ents,				
Module	Introduct		-					<i>.</i>	tions: ir	situ	1	\checkmark		
IV	vs. ex situ										v	v		
6 lectures	affecting													
	Hydrocarb	ons and	<u>carbam</u> at	te and cl	<u>hlorina</u> te	ed pestic	ides: Ae	erobic a	nd anae	robic				

	degradation pathways, Role of consortia and biofilms. Mechanisms: hydrolysis, oxidation, dechlorination, Key microbial species (Pseudomonas, Flavobacterium, etc.), Agricultural soil bioremediation techniques: key microbial species, biochar, composting		
Module V 5 lectures	Phytoremediation and other emerging technologies: Phytoextraction, phytostabilization, phytodegradation, rhizofiltration, Role of rhizosphere bacteria and mycorrhizae, Plants used in phytoremediation (e.g., <i>Brassica, Populus, Vetiver</i>), Enhancing phytoremediation via genetic modification, Constructed Wetlands, Biosorption, and Bioaugmentation, Emerging Technologies, Nanobioremediation: nanoparticles + microbes/plants, Microbial Fuel Cells (MFCs): simultaneous treatment and energy recovery, Genetically engineered microbes for pollutant specificity	~	~
Current Trends 2 lectures	Current Contours (<i>Not for Final Exam, only for Discussion</i>): Recent concepts – Technological and Scientific developments – Real world cases/examples – Policy/Practice updates – Contradictions – World/Indian Scenario		~
30 Lectures	DID BHAS		

- Schnoor, J.L. (2001). *Phytoremediation: Technology Overview Report*, U.S. Environmental Protection Agency (EPA), Groundwater Remediation Technologies Analysis Center,
- Pilon-Smits, E. (2020), *Phytoremediation: Methods and Reviews*, Humana Press (Springer Protocols Methods in Molecular Biology)
- Prasad, M.N.V. (2007). Phytoremediation: Role of Plants in Contaminated Site Management, Springer
- Raskin, I. & Ensley, B.D. (1999). *Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment* Wiley-Interscience
- Siegrist, R.L., Crimi, M., Simpkin, T.J. (2011). in Situ Chemical Oxidation for Groundwater Remediation, Springer
- Ferguson, C.C. (1999). Chemical Fate and Transport in the Environment, CRC Press
- Mahajan, S.P. (1985), Pollution Control in Process Industries, Tata McGraw-Hill
- Atlas, R.M. & Bartha, R. (1997), *Microbial Ecology: Fundamentals and Applications* (4th Edition), Benjamin Cummings
- Maier, R.M., Pepper, I.L., & Gerba, C.P. (2015), Environmental Microbiology (3rd Edition), Academic Press
- Singh, A., & Ward, O.P. (2004), *Biodegradation and Bioremediation*, Springer-Verlag Berlin Heidelberg
- Jain, R.K., et al. (2011), Microorganisms in Environmental Management: Microbes and Environment, Springer
- Singh, S.N., & Tripathi, R.D. (2007), *Environmental Bioremediation Technologies* Publisher: Springer
- Fulekar, M.H. (2010), Bioremediation Technology: Recent Advances, Springer

25PGPP02: PRACTICAL II: SPATIAL ANALYSIS AND MODELLING


Course Objectives:

- 1. Gain proficiency in remote sensing techniques for environmental and spatial analysis.
- 2. Develop hands-on skills in GIS software for data collection, analysis, and visualization.
- 3. Apply remote sensing and GIS tools to solve real-world problems in natural resource management, urban planning, and environmental monitoring.

	Modules
Module I	Introduction to Remote Sensing and GIS
	Basic cartography, Toposheet identification, Latitude/Longitude conversions, Installation and
	interface overview of software such as ArcGIS, QGIS, or ENVI. Accessing satellite imagery from
	platforms like Sentinel Hub, USGS Earth Explorer, or Copernicus, Preprocessing satellite images:
	Georeferencing, mosaicking, and clipping.
	Image Processing Techniques
Module II	Image Enhancement: Applying contrast stretching, histogram equalization, and spatial filtering
	techniques, Calculating vegetation indices such as NDVI, EVI, and SAVI.
	Supervised and Unsupervised Classification: Implementing image classification techniques to
	map land use/land cover (LULC). Accuracy assessment using ground truth data.
	GIS Data Handling and Analysis
Module III	Digitization and Data Input: Creating and editing shapefiles for points, lines, and polygons.
	Digitizing features like roads, rivers, and administrative boundaries.
Module IV	Spatial Data Analysis: Buffering, overlay analysis, and spatial joins. Network analysis for
	transportation or utility networks. Raster Data Analysis: Elevation and slope mapping using Digital
	Elevation Models (DEMs). Performing hydrological analysis (e.g., watershed delineation).
Module V	Spatial Interpolation: Applying Kriging, IDW, or Thiessen polygon methods to predict spatial
	patterns. Analyzing land cover change over time using multi-date satellite images. Publishing maps
	and layers on platforms like ArcGIS Online or Google Earth Engine. Creating interactive web maps
	using tools like Leaflet or Mapbox.
	Global Positioning System
Module VI	GPS : Operating and obtaining Signals in GPS. Collection of Latitude Longitude Values Terrain
	Mapping and integrating maps in GIS.

Course Outcomes

- Acquire and preprocess remote sensing data from various sources, including satellite and aerial imagery, using appropriate tools and techniques.
- Apply image enhancement, classification, and interpretation techniques to extract meaningful information from remotely sensed data.
- Perform spatial analysis and modeling using GIS software to solve complex real-world problems in environmental, urban, agricultural, and disaster management domains.
- Integrate remote sensing data with GIS layers to create thematic maps, analyze spatial patterns, and generate decision-support outputs.
- Demonstrate proficiency in using software such as ArcGIS, QGIS, ERDAS Imagine, or ENVI for processing and analyzing geospatial data.

	CORE 7	· CORP	ORATE	' STR /	TFCIF	FOR	FNVIR	ONME	NTAL N	/ A N A	CFM	IFNT		
	CORE /	. COM	UNAIL		ourse Co						UEM			
Course (Objectives:													
	o understan	d the Stru	icture, fe	eatures a	and bene	fits of I	SO Man	agemei	nt system	L				
	orresponder					1 and I	SO 4500	1						
	o apply the o evolve str		<u> </u>			onsihili	ty (CSR))						
* Lectur		itorial-T	•	ctical-P		Credit-()			L	Т	P	С
Per Wee											3	1		4
	Dutcomes:							. 1	1.					KL
	Understand Conceptuali				A			ntal qua	ality				K1	K3
	Perform an			-				ironm	antal aud	lite or	oluoti	on of		, K4
	environmen									inis, ev	aiuati	011 01		, ћ4
	Develop pla								ety mana	gemen	t syste	ems	K4,	K5
5.	Students car	n evolve	environ	nental-r	nanagen	nent prin	nciples t	o achie	eve conti	nual in	nprove	ement	K4,	K6
	in a corpora		1.1	Inon	105	dille	TIRU	25	SC					
	lge level: Re	emember	(K1); U	ndersta	nding (K	(2); Per	form (K	3); Ana	alyse (K4	l); Syn	thesiz	e (K5)	; Eva	luate
(K6)		10	5		as	and a		10	2					
Mapping	g course out						DOC	DOF	2 10	DO		210		
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO9		D10		
	CO1	S	Μ	Μ	Μ	Μ	Μ	Μ	Μ	S	S			
	CO2	S	L	М	S	Μ	Μ	М	L	Μ	S			
	CO3	Μ	Μ	S	S	Μ	Μ	S	Μ	S	Μ			
	CO4	S	Μ	S	Μ	Μ	Μ	S	Μ	Μ	S			
	CO5	S	Μ	Μ	Μ	Μ	S	S	Μ	S	S			
		Strong			Μ	oderat	e			Low				
Assessm	ent Method	s: Test-T	, Semin	ar- S, A	ssignm	ent-A,	Discuss i	ion- D	151	1				
			2		Modu				C.	1	_T	S	A	D
Module 5 lecture		t andard 1 s of ISO									~	\checkmark	V	\checkmark
		ew of ISC							.					
		rrelations			10	5 10 III.	_							
Module 1 6 lecture	1.01	1001 - En									\checkmark			
0 iccture	LIIII	nmental mme(s)-												
		- Implem												
		ement. G												
		l princip					e - Aud	it activ	ities, ste	ps in				
Module		onmental					ntal audi	ting, a	udit proto	ocol -	\checkmark	\checkmark		\checkmark
6 lecture	s environ	nmental a	udit proo	cess - pr	e-audit a	ctivities	s - onsite	audito	ry - post-	audit				
		y - Concej												
	-	cle fram ory Anal						-						
		t improv												
	solid	waste n	nanagem						- Corp					
	Enviro	nmental I	Reports											

Module IV 6 lectures	ISO 45000 Environmental Health and Safety: Concept of safety, health and environment. Diseases through pollution Basis of occupational health, biological monitoring (e.g. BEI), Occupational Hygiene, Concept of First Aid, Preventive Measures. Occupational Health & Safety Management System	~	~	
Module V 5 lectures	Corporate Social Responsibility- Principles of Responsible Investment - Corporates and Environmental Protection – Legislations related with CSR- Companies (Corporate Social Responsibility Policy) Rules. Benefits of CSR - Brand Differentiation - Consumer Perspective - Risk management - Employee Retaining - Laws and Legislations - Ethical Consumerism - Social Awareness - Corporate Greenwashing	~	~	~
Current Trends 2 lectures	Advances in : Recent concepts – Technological and Scientific developments – Real world cases/examples – Policy/Practice updates – Contradictions – World/Indian Scenario			~
30 Lectures				

- Stefan Schaltegger, Roger Burritt, Holger Petersen (2017) An Introduction to Corporate Environmental Management. Taylor and Francis
- Richard Welford (ed) 1999, Corporate Environmental Management Systems and strategies, University press (India) limited, Hyderabad.
- Banerjee B (2009) Corporate Environmental Management. Prentice-Hall Of India Pvt.
- Kamlesh Pritwani (2016) Sustainability of Business in the Context of Environmental Management. TERI Press
- Forest L. Reinhadt, 2000, Down to Earth Applying Business principles to Environmental Management, Harvard Business school press. Boston, Massachusetts.
- Mark Anthony Camilleri (2018) Corporate Sustainability, Social Responsibility and Environmental Management: An Introduction to Theory and Practice with Case Studies (CSR, Sustainability, Ethics & Governance), Springer
- Samuel O. Idowu, René Schmidpeter 2024 CSR, Sustainability, Ethics & Governance, Springer

Course Instructor: Dr.N.D.Shrinithivihahsi

CORE 8: MICROBIAL TECHNIQUES Course Code: 25PGCC08

Course Objectives:

- 1. To provide a deep understanding of core microbiological laboratory techniques.
- 2. To train students in the cultivation, enumeration, and preservation of microorganisms.
- 3. To introduce advanced tools and techniques for microbial analysis and identification.
- 4. To ensure safe and sterile handling of microbial cultures under different biosafety levels.
- 5. To promote critical thinking and hands-on skills through experimental microbiology.

* Lecture-L Per Week					ls throug	- <u>-</u>	mientai	microo	iology.			1			
Per Week	- *Tutoria	al-T *	Practica	l-P	*Credi	it-C					L	Τ	P	(
											3	1	0	4	
Course Out														KL	
acr	monstrate adv			ling of n	nicrobia	l structu	re, func	tion, ge	netics, a	nd taxor	nom	У	K	1, K2	
	ply modern to	echnique	s in micr	obiology	/ for mic	robial i	dentifica	tion an	d analys	is.			K	2, K3	
	alyze microb hogenesis, sy							vironme	ents to u	nderstan	nd		K	4, K5	
4. Cri	tically assess	microbia	al interac	tions and	d their ir	nfluence	on envi	ronmer	ital proc	esses su	ch a	S	K	4, K5	
5. Ap	ply microbio	logical pi	rinciples					liation,	wastewa	ater treat	tmei	nt,	K	3, K6	
Knowledge	level: Remer	nber (K1); Unders	standing	(K2); P	erform (K3); Ar	nalyse (K4); Syı	nthesize	(K5	5); Ev	aluat	e (K6)
Mapping co	ourse outcom	es with p	orogram	me outo	comes	1			S.						
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	010			
	CO1	S	М	М	L	М	L	М	М	S	Μ				
	CO2	М	S	М	М	М	L	S	S	S	Μ				
	CO3	М	М	М	М	М	М	М	М	S	М				
	CO4	M	М	М	М	М	M	S	S	S	S				
	CO5	М	S	S	М	М	Μ	S	S	S	S				
		Strong			Ioderate		Low	-	•						
Assessment	Methods: To		9					D	131	1					
Module I				, 1155151	Modu		551011		2			Т	S	Α	D
5 lectures	Basic Mic Sterilizatio Tyndallizat	n technic	ques: phy	vsical m	ethods -	; Heat-c	lry, Inci	neration				~		\checkmark	v

Module III 6 lectures	Microscopy and Staining Principles and types of microscopy: bright field, dark field, phase contrast, fluorescence, electron microscopy (TEM, SEM) - Sample preparation for microscopy - Staining techniques: simple, differential (Gram, acid-fast), structural stains (spore, capsule, flagella) - Instruments: centrifuge, pH meter, Colony counter, Incubator (Principles, components and use)	~	~	~
Module IV 6 lectures	Quantitative Microbial Techniques Microbial growth kinetics and measurement - Viable and total count methods (CFU, turbidity, direct count using hemocytometer) - Most Probable Number (MPN) and membrane filtration techniques - Antibiotic sensitivity testing (disc diffusion, MIC, MBC)	~	~	
Module V 5 lectures	Ecological and Environmental Microbiology: Microbe-microbe and microbe-host interactions (symbiosis, competition, cooperation), Decomposition and nutrient recycling, Microbial food webs and trophic interactions, Soil microbiomes and rhizosphere interactions, Aquatic microbiology (freshwater and marine), Extremophiles and life in extreme environments, Biofilms and microbial mats, Applied Environmental Microbiology: Microbial roles in bioremediation and biodegradation, Wastewater treatment microbiology	~		~
Current Trends 2 lectures	Role of extremophiles in environmental adaptations, Microbial applications in bioenergy production. Innovations in metagenomics for studying microbial communities			~
30 Lectures	A Star Contraction of the start			

- Microbiology: Pelczar, Chan and Kreig; Tata McGraw Hill Pub. Co. Ltd.
- General Microbiology: RY Stanier; McMillan Press.
- General Microbiology: Hans G Schiegel; Cambridge University Press.
- Textbook of Microbiology: Dubey and Maheshwari; S. Chand Co. Ltd.
- Cullimore D. R. (2010). Practical Atlas for Bacterial Identification. (2nd Edition). -Taylor & Francis.
- Collee J. G., Fraser A.G. Marmion B. P. and Simmons A. (1996). Mackie & McCartney Practical Medical Microbiology. (14th Edition). Elsevier, New Delhi.
- Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, W. Matthew Sattley, David A. Stahl, 2023, *Brock Biology of Microorganisms*, 16th Edition, Pearson Publishers ISBN: 978-0-13-589151-1 (Hardcover)
- Raina M. Maier, Ian L. Pepper, Charles P. Gerba, 2015, *Environmental Microbiology* 3rd Edition Academic Press (an imprint of Elsevier) **ISBN:** 978-0-12-394626-3 (Hardcover)
- Ronald M. Atlas, Richard Bartha 1997, *Microbial Ecology: Fundamentals and Applications*, 4th , Benjamin Cummings, **ISBN:** 978-0-8053-4523-5 (Hardcover)

Course Instructor: Dr.M.Prashanthi Dev

CORE 9: ENVIRONMENTAL DATA ANALYTICS AND RESEARCH METHODS

COURSE CODE: 25PGCC09 (Formerly Statistics and Numerical Methods / Research Methodology)

Course Objectives:

- Gain foundational skills in data handling, analysis, and interpretation using tools like Excel, R, or Python.
- Apply basic statistical methods to identify patterns and trends in environmental datasets.
- Create meaningful visualizations to communicate insights effectively and understand to solve real-world environmental problems using data analytics techniques.
- To educate the learners on statistical tools that could support data analysis pertaining to business situations

•	10 educate t		s on stat	istical to	iois tilat	could si	upport u	aia allal	ysis per	tanning t	o ousine	-22 SIII	iail01
* Lec	ture-L *Tı	itorial-T	*Pra	ctical-P	*(Credit-C	2			L	Т	Р	C
Per V	Week									3	1	0	4
Cours	se Outcomes:											ŀ	KL
1.	Demonstrate	the abili	ty to ide	entify an	nd acces	s enviro	onmenta	l dataset	ts and p	reproce	ss raw	K1,	K3, K
	environment	al data to	make it	t suitable	e for an	alysis, a	addressi	ng issue	s like n	nissing v	values,		
	inconsistenc	ies, and ou	utliers.			-		-		-			
2.	Apply funda	mental sta	atistical	techniqu	ies to su	ımmariz	e enviro	onmenta	l data, i	dentify t	trends,	K2 &	: K3
	and make ev	idence-ba	sed infe	rences.	(0 te	10	RATE						
3.	Utilize explo	ratory dat	a analyti	ics techn	iques to	uncover	r pattern	s, relatio	onships,	and ano	malies	K4	
	in environme	ental datas	sets, enal	bling inf	formed d	lecision	-making	S.S.					
4.	Gain profici	ency in u	sing dat	ta analys	sis tools	such a	s Excel	, Pythor	ı (panda	as, Matr	olotlib,	K3, F	ζ5
	Seaborn), or	R (ggplot	2, dplyr) for env	vironmer	ntal anal	ytics.	20	2	-			
5.	Understand l	now envir	onmenta	ıl data ar	nalytics	can be u	used to in	nform su	ıstainab	le polici	es and	K2, F	ζ6
	practices, co	ntributing	to envir	onmenta	al conser	rvation a	and man	agemen	t efforts				
Know	ledge level: R	emember	(K1): U	nderstar	nding (K	(2): Perf	form (K	3): Anal	vse (K4): Svnth	esize (k	(5): E	valua
(K6)		1 5			0	7	× ×	,,			,	,,	
Manr	oing course ou	tcomes w	ith nrog	ramme	outcom	es	- No	-0					
n	CO/PO	PO1	PO2	P03	PO4	P05	P06	P07	P08	P09	P010		
	-												
	C01	М	М	М	М	М	М	S	S	S	М		
	C02	М	L	М	М	Μ	М	S	М	S	М		
	C03	М	L	М	М	М	М	S	S	S	М		
	CO4	М	М	М	М	М	М	S	S	S	М		
	C05	S	L	М	М	S	S	М	М	S	S		
							-						

Assessment Methods: Test-T, Seminar-S, Assignment-A, Discussion-D

Moderate

Strong

	Modules	Т	S	А	D
Module I	Introduction to environmental data analytics, Importance of data analytics	\checkmark			\checkmark
5 lectures	in environmental decision-making, Types and sources of environmental data,				
	datasets, introduction to basic programs(Excel, Python and R), Identifying				
	patterns and anomalies in environmental data. Visualization in environmental				
	data analysis				
Module II	Statistics: Importance and Scope, Measures of Central tendency, Mean	\checkmark	\checkmark	\checkmark	
6 lectures	Weighted Arithmetic Mean, Geometric Mean and Harmonic Mean. Median				
	and Mode, Measures of Quartiles, Deciles and Percentiles. Problems,				
	Applications of Mean, Median and Mode, Positional measures. Measures				
	of dispersion, Standard Deviation, Variance, Skewness, Kurtosis and				
	Moment. Correlation, Types of correlation, Spearman Rank Correlation.				
	Regression				
Module III	Probability, Concepts and Definition, Rule of Probability, Baye's theorem	\checkmark	~	\checkmark	\checkmark
	and Expected value. Probability Distribution: Binomial, Poisson and Normal				

Low

6 lectures	distributions. Test of hypothesis and inferences, Setting of hypothesis, Type I and Type II error, Z-test, t-test, ANOVA and Chi-Square test Problems				
Module IV 6 lectures	Research Process: Generating Research Ideas, Developing a research project structure of a research proposal, Organising Survey and Interviews, Collection of Data - Sampling design and Techniques - Classification and Representation of Data (Graphical and Diagrammatic). Research Design - Deduction and Induction causality - Dialectical Materialism – Models - Research methods - historical, theoretical and empirical - case study - objectivity in research	~	~	~	
Module V 5 lectures	Thesis, Research and Popular Article writing, short communications – Introduction, Literature Review, Discussion, format and writing, preparing tables, figures and reference lists (Microsoft Excel), importance of Scopus, h index and citations	~		~	<
Current Trends 2 lectures	Ethical considerations in environmental data usage, Addressing uncertainties and biases in data, Communicating findings effectively to stakeholders. Publicly available datasets from government and non-governmental organizations (e.g., EPA, NOAA, WHO).				~
30 Lectures	Level and The The The The State				

- Statistical Methods by S.P. Gupta. Sultan chand& Sons New Delhi,2004.
- Numerical methods, Balaguruswamy E TMH Publications
- Introduction to Numerical analysis, Froberg C E Addison Wesley
- Vogel "Text book of Quantitative inorganic analysis (2004) Bencetts J Denney, R.C. Jeffery, G.H. and Mendham J. Longman Scientific and Technical U.K.
- Molecular cloning a laboratory manual 3rd edition-Joseph same brook and David W Russell, Cold Spring Harbor Laboratory Press, New York.
- Daniel R. Montello and Paul Sutton 2006, An introduction to Scientific Research Methods in Geography, Sage Publication Inc.
- S.P. Gupta (2004) Statistical Methods, Sultan Chand and Sons, New Delhi
- Day, R.A. 1998. How to write and publish a Scientific paper 5th ed. Orynx Press Phoenix
- Zhang Zhihua (2023) Environmental Data Analysis, Publisher: De Gruyter, ISBN: 9783110424904, 9783110424904
- Ralph R.B. Von Frese (2023) Basic Environmental Data Analysis for Scientists and Engineers Paperback, CRC press

Course Instructor: Dr.M.Prashanthi Devi

CORE (CHOICE0 10: ENVIRONMENTAL SOCIAL GOVERNANCE COURSE CODE: 25PGCC10

Course Objectives:

- Understand the foundations of ESG and its role in sustainable development.
- Explore environmental, social, and governance factors influencing organizations.
- Learn frameworks, regulations, and standards for ESG reporting and compliance.
- Explore the intersections of ESG with policy, global markets, and industry frameworks.

						/		istry Irai		-		
ture-L *Tu	torial-T	*Pra	ctical-P	*0	Credit-C	1			L	Т	Р	(
Veek									3	1	0	4
se Outcomes:]	KL
Students will	develop	a deep	underst	anding	of ESC	G frame	works,	principl	es, and	their	K1,	K2
significance in	promotin	g sustai	nable an	d ethica	l busine	ss practi	ces.					
Students will	acquire sl	kills to	evaluate	and me	easure o	organiza	tional E	SG perf	formanc	e, and	K2	& K
		e finding	s throug	h standa	ardized 1	reporting	g tools s	uch as C	GRI, SAS	SB, or	K4	
			and and	10 W	01	ARAT	-					
		0						gies, de	cision-m	naking	K4,	K5
× ·							1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S				
		A	0	0			0			·	K2, I	<5, k
		-	<u> </u>								120 L	6 IZ
	-		•	-				U		vative	К3,К	. Э ,К
-			•		-27			100 CC				
ledge level: Ro	emember	(K1); U	nderstan	dıng (K	2); Pert	orm (K.	3); Anal	yse (K4)); Synth	esize (k	(5); E	valua
	1 1			1	7			~		1		
oing course out	tcomes wi	ith prog	ramme	outcom	es	200						
CO/PO	DO1											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO/FO	S POI	PO2 L	PO3 M	PO4 M	PO5 M	PO6 M	PO7 M	PO8 L	PO9 S	PO10 S		
CO1	S	L	М	Μ	М	М	М	L	S	S		
CO1 CO2	S S	L M	M M	M M	M M	M M	M S	L M	S S	S S		
CO1	S	L	М	Μ	М	Μ	М	L	S	S		
	Veek se Outcomes: Students will significance in Students will effectively con TCFD framew Students will 1 processes, and Students will 2 students will ethical conside Students will d solutions, and ledge level: Re-	Veek se Outcomes: Students will develop significance in promotin Students will acquire sl effectively communicate TCFD frameworks. Students will learn to in processes, and operation Students will demonstra ethical considerations, e Students will develop the solutions, and contribute ledge level: Remember	Veek Se Outcomes: Students will develop a deep significance in promoting sustain Students will acquire skills to o effectively communicate finding TCFD frameworks. Students will learn to integrate H processes, and operational practic Students will demonstrate know ethical considerations, ensuring Students will develop the ability solutions, and contribute to create ledge level: Remember (K1); U ing course outcomes with prog	Veek Se Outcomes: Students will develop a deep underst significance in promoting sustainable an Students will acquire skills to evaluate effectively communicate findings throug TCFD frameworks. Students will learn to integrate ESG con processes, and operational practices to de Students will demonstrate knowledge of ethical considerations, ensuring organization Students will develop the ability to analy solutions, and contribute to creating sust ledge level: Remember (K1); Understan ing course outcomes with programme	Veek se Outcomes: Students will develop a deep understanding significance in promoting sustainable and ethica Students will acquire skills to evaluate and me effectively communicate findings through standa TCFD frameworks. Students will learn to integrate ESG consideration processes, and operational practices to drive long Students will demonstrate knowledge of globa ethical considerations, ensuring organizational c Students will develop the ability to analyze comp solutions, and contribute to creating sustainable Iedge level: Remember (K1); Understanding (K	Veek se Outcomes: Students will develop a deep understanding of ESC significance in promoting sustainable and ethical busine Students will acquire skills to evaluate and measure of effectively communicate findings through standardized to TCFD frameworks. Students will learn to integrate ESG considerations into processes, and operational practices to drive long-term v Students will demonstrate knowledge of global and lo ethical considerations, ensuring organizational complian Students will develop the ability to analyze complex ESC solutions, and contribute to creating sustainable business	Veek se Outcomes: Students will develop a deep understanding of ESG frame significance in promoting sustainable and ethical business practi Students will acquire skills to evaluate and measure organiza effectively communicate findings through standardized reporting TCFD frameworks. Students will learn to integrate ESG considerations into corpora processes, and operational practices to drive long-term value cree Students will demonstrate knowledge of global and local ESG ethical considerations, ensuring organizational compliance and s Students will develop the ability to analyze complex ESG-related solutions, and contribute to creating sustainable business and so ledge level: Remember (K1); Understanding (K2); Perform (K3)	Veek se Outcomes: Students will develop a deep understanding of ESG frameworks, significance in promoting sustainable and ethical business practices. Students will acquire skills to evaluate and measure organizational E effectively communicate findings through standardized reporting tools s TCFD frameworks. Students will learn to integrate ESG considerations into corporate strate processes, and operational practices to drive long-term value creation. Students will demonstrate knowledge of global and local ESG regula ethical considerations, ensuring organizational compliance and sustainal Students will develop the ability to analyze complex ESG-related challen solutions, and contribute to creating sustainable business and societal our ledge level: Remember (K1); Understanding (K2); Perform (K3); Anal	Veek See Outcomes: Students will develop a deep understanding of ESG frameworks, principl significance in promoting sustainable and ethical business practices. Students will acquire skills to evaluate and measure organizational ESG perf effectively communicate findings through standardized reporting tools such as C TCFD frameworks. Students will learn to integrate ESG considerations into corporate strategies, deeprocesses, and operational practices to drive long-term value creation. Students will demonstrate knowledge of global and local ESG regulations, s ethical considerations, ensuring organizational compliance and sustainability lear Students will develop the ability to analyze complex ESG-related challenges, dev solutions, and contribute to creating sustainable business and societal outcomes. Iedge level: Remember (K1); Understanding (K2); Perform (K3); Analyse (K4)	Veek3See Outcomes:Students will develop a deep understanding of ESG frameworks, principles, and significance in promoting sustainable and ethical business practices.Students will acquire skills to evaluate and measure organizational ESG performance effectively communicate findings through standardized reporting tools such as GRI, SATTCFD frameworks.Students will learn to integrate ESG considerations into corporate strategies, decision-m processes, and operational practices to drive long-term value creation.Students will demonstrate knowledge of global and local ESG regulations, standard ethical considerations, ensuring organizational compliance and sustainability leadership.Students will develop the ability to analyze complex ESG-related challenges, devise inno solutions, and contribute to creating sustainable business and societal outcomes.Iedge level: Remember (K1); Understanding (K2); Perform (K3); Analyse (K4); Synth	Veek31se Outcomes:Students will develop a deep understanding of ESG frameworks, principles, and their significance in promoting sustainable and ethical business practices.Students will acquire skills to evaluate and measure organizational ESG performance, and effectively communicate findings through standardized reporting tools such as GRI, SASB, or TCFD frameworks.Students will learn to integrate ESG considerations into corporate strategies, decision-making processes, and operational practices to drive long-term value creation.Students will demonstrate knowledge of global and local ESG regulations, standards, and ethical considerations, ensuring organizational compliance and sustainability leadership.Students will develop the ability to analyze complex ESG-related challenges, devise innovative solutions, and contribute to creating sustainable business and societal outcomes.Iedge level: Remember (K1); Understanding (K2); Perform (K3); Analyse (K4); Synthesize (Kaling Standards); Standards (K2); Perform (K3); Analyse (K4); Synthesize (Kaling Standards); Standards (K2); Perform (K3); Analyse (K4); Synthesize (Kaling Standards); Standards (K4); Synthesize (Kaling Standards); Standards); Standards (K2); Perform (K3); Analyse (K4); Synthesize (Kaling Standards); Standards); Standards (K2); Perform (K3); Analyse (K4); Synthesize (Kaling Standards); Standards); Standards (K4); Synthesize (Kaling Standards); Standards); Standards (K4); Synthesize (Kaling Standards); Standards); Standards (K4); Synthesize (Kaling Standards); Standards); Standards; Standards); Standards); Standards, Standards); Standards, Standards); Standards, Standards); Standards, Standards); Standards, Standards); Standard	Veek310See Outcomes:Students will develop a deep understanding of ESG frameworks, principles, and theirK1,significance in promoting sustainable and ethical business practices.Students will acquire skills to evaluate and measure organizational ESG performance, andK2Generational ethical business practices.Students will acquire skills to evaluate and measure organizational ESG performance, andeffectively communicate findings through standardized reporting tools such as GRI, SASB, orK4TCFD frameworks.Students will learn to integrate ESG considerations into corporate strategies, decision-makingStudents will demonstrate knowledge of global and local ESG regulations, standards, andethical considerations, ensuring organizational compliance and sustainability leadership.Students will develop the ability to analyze complex ESG-related challenges, devise innovativesolutions, and contribute to creating sustainable business and societal outcomes.Hedge level: Remember (K1); Understanding (K2); Perform (K3); Analyse (K4); Synthesize (K5); E

StrongModerateLowAssessment Methods: Test-T, Seminar- S, Assignment- A, Discussion- D

Μ

Μ

S

CO5

	Modules	Т	S	A	D
Module I	Introduction to ESG : Definition of ESG, Understanding ESG and its	\checkmark		\checkmark	\checkmark
5 lectures	Importance, ESG's role in global sustainability and corporate responsibility, Trends in ESG investment and corporate adoption, Investors, consumers, policymakers, and community perspectives, ESG Stakeholders, Relationship between ESG and the UN Sustainable Development Goals (SDGs), Global drivers of ESG adoption: Economic, legal, and societal pressures				
Module II	Environmental Factors: Climate Change and Carbon Management,	\checkmark	\checkmark	~	
6 lectures	Climate risks and opportunities, Net-zero commitments and carbon accounting frameworks, Carbon markets, offsets, and trading, Resource Management and Biodiversity: Sustainable resource use (energy, water, materials), Impact of operations on biodiversity and ecosystems				
Module III	Social Factors: Human Rights and Labor Practices, Diversity, equity, and	\checkmark	\checkmark	\checkmark	\checkmark
6 lectures	inclusion (DEI), Supply chain ethics and labor standards, Community				

Μ

S

S

S

Μ

S

S

	Impact and Social Responsibility, Corporate social responsibility (CSR)				
	programs, Social license to operate and community engagement, DEI				
	(Diversity, Equity, and Inclusion) metrics and strategies,				
Module IV	Governance Factors: Corporate Governance and Leadership,	\checkmark	\checkmark	\checkmark	
6 lectures	Transparency, accountability, and ethical leadership, Board diversity and				
	decision-making structures, ESG Risk Management and Compliance, Anti-				
	corruption policies, Risk assessment frameworks, Balancing profit with				
	ESG priorities, Governance metrics and performance measurement				
Module V	ESG Frameworks and Reporting: ESG Standards and Certifications,	\checkmark	\checkmark	\checkmark	\checkmark
5 lectures	Overview of standards like GRI, SASB, TCFD, and CDP, Industry-specific				
	ESG considerations, ESG Reporting and Metrics, Best practices for data				
	collection and disclosure, Tools for ESG reporting, Business Responsibility				
	& Sustainability Reporting (BRSR)				
Current	ESG in Practice: Case studies of companies leading in ESG integration,				\checkmark
Trends	Challenges and lessons learned, Developing an ESG Strategy: Crafting				
2 lectures	actionable ESG strategies for businesses, Future trends and innovations in				
	ESG				
30	13 ⁶⁰ A TIRE AS				
Lectures	A AUGUST AND CHILD THE				

- *Principles of Sustainable Finance* (2018) by Dirk Schoenmaker and Willem Schramade, Oxford University Press
- The ESG Handbook: The Guide for Investors by Betsy Atkins 2019
- Industry ESG reports (e.g., BlackRock, MSCI ESG Ratings)
- UN SDGs, World Economic Forum ESG Resources
- Academic Journals: Journal of Environmental Economics and Management, Corporate Governance: An International Review
- Colin Read (2023) Understanding Sustainability Principles and Esg Policies: A Multidisciplinary Approach to Public and Corporate Responses to Climate Change Springer International Publishing, Palgrave MacMillan

Course Instructor: Dr.M.Prashanthi Dev

CORE (CHOICE) 10 : SUSTAINABLE ECOTOURISM COURSE CODE: 25PGCC10

Course Objectives:

- To know the concepts and purpose of Ecotourism
- To understand the components and resources for ecotourism
- Learn about the people participation in Ecotourism and identify the sustainable ecotourism strategies.

Lect	ture-L *Tu	torial-T	*Prac	ctical-P	*C	redit-C				L	Т	Р	0
	Week									3	1	0	4
Cours	se Outcomes:												KL
1.	Students will of and their aligned development.						0			-	-	K1	, K2
2.	Students will C activities and sustainability.											K2,	K3,
3.	Students will d goals, commur	ity engag	gement, a	and respo	onsible r	esource	manage	ment.	Ũ				, K6
4.	Students will frameworks to	promote	sustainal	ble pract	tices with	nin ecoto	ourism i	ndustrie	s.	Ũ			
	C			<u> </u>						nin a th	at local	K 5	K6
5.	Course will f stakeholders be										at local	K.J.,	I CO
Know		enefit equ	itably w	hile pres	serving the	heir cult	ural and	lecolog	ical heri	tage			
Know (K6)	stakeholders be vledge level: R	enefit equ emember	itably wi (K1); U	hile pres Inderstar	serving the	heir cult 2); Perf	ural and	lecolog	ical heri	tage			
Know (K6)	stakeholders be vledge level: R ping course out	enefit equ emember comes wi	itably w (K1); U ith prog	hile pres Inderstar ramme	serving the serving the serving the serving the serving the service se	heir cult 2); Perf es	ural and orm (K.	l ecolog 3); Ana	ical heri lyse (K4	tage i); Synt	hesize (K5); I	
Know (K6)	stakeholders be vledge level: Re bing course out CO/PO	enefit equ emember comes wi PO1	itably wi (K1); U ith prog PO2	hile pres Inderstar ramme PO3	erving the ding (Kong the ding	heir cult 2); Perf es PO5	ural and form (K. PO6	l ecolog 3); Ana PO7	ical heri lyse (K ² PO8	tage 4); Synt PO9	hesize (PO10	K5); I	
Know (K6)	stakeholders bo vledge level: Ro ping course out CO/PO CO1	enefit equ emember comes wi PO1 S	itably with the second	hile pres Inderstar ramme PO3 M	erving the ding (K outcome PO4 L	heir cult 2); Perf es PO5 S	ural and form (K. PO6 M	ecolog 3); Ana PO7 M	ical heri lyse (K4	tage 4); Synt PO9 S	hesize (PO10 S	K5); I	
Know (K6)	stakeholders be vledge level: Re bing course out CO/PO	enefit equ emember comes wi PO1	itably wi (K1); U ith prog PO2	hile pres Inderstar ramme PO3	erving the ding (Kong the ding	heir cult 2); Perf es PO5	ural and form (K. PO6	l ecolog 3); Ana PO7	ical heri lyse (K ² PO8	tage 4); Synt PO9	hesize (PO10	K5); I	
Know (K6)	stakeholders bo vledge level: Ro ping course out CO/PO CO1	enefit equ emember comes wi PO1 S	itably with the second	hile pres Inderstar ramme PO3 M	erving the ding (K outcome PO4 L	heir cult 2); Perf es PO5 S	ural and form (K. PO6 M	ecolog 3); Ana PO7 M	ical heri lyse (K ² PO8 M	tage 4); Synt PO9 S	hesize (PO10 S	K5); I	
Know (K6)	stakeholders bo vledge level: Ro ping course out CO/PO CO1 CO2	enefit equ emember comes wi PO1 S S S	itably with rog PO2 L M	hile pres Inderstar ramme PO3 M M	outcome PO4 L M	heir cult 2); Perf es PO5 S S S	ural and form (K. PO6 M M	ecolog 3); Ana PO7 M S	ical heri lyse (K4 PO8 M M M	tage 4); Synt PO9 S S	PO10 S S	K5); I	
Know (K6)	stakeholders bo vledge level: R bing course out CO/PO CO1 CO2 CO3	enefit equ emember comes wi PO1 S S S S S	itably with rog PO2	hile pres Inderstar PO3 M M M M	erving the serving	heir cult 2); Perf es PO5 S S S S	PO6 M M S	PO7 M S S	PO8 M M S	tage 4); Synt PO9 S S S S	PO10 S S S S	K5); I	
Know (K6)	stakeholders bo vledge level: Ro oing course out CO/PO CO1 CO2 CO3 CO4	enefit equ emember comes wi PO1 S S S S S M	itably wi (K1); U ith prog PO2 L M M L L L	hile pres Inderstar ramme PO3 M M M M M M M L	outcome PO4 L M M S	heir cult 2); Perf es PO5 S S S S S M S	PO6 M M S M	PO7 M S S M M M	PO8 M M S M	tage i); Synt PO9 S S S M	PO10 S S S S S S	K5); I	
Know (K6) Mapp	stakeholders bo vledge level: Ro oing course out CO/PO CO1 CO2 CO3 CO4	enefit equ emember Comes wi PO1 S S S S M S S M S S tron	itably wi (K1); U ith prog PO2 L M M L L L L	hile pres nderstar PO3 M M M M M M L W	erving the ding (K outcome PO4 L M M S S M M	heir cult 2); Perf es PO5 S S S S S M S S M S	PO6 M M S M S S Low	PO7 M S S M M M	PO8 M M S M	tage i); Synt PO9 S S S M	PO10 S S S S S S	K5); I	

	widdules	1	3	A	ען
Module I	Definition and Concept of ecotourism, Characteristics and Functions of Eco-	\checkmark			\checkmark
5 lectures	Tourism, Types and Nature of ecotourism, Social and ecological impacts of				
	tourism, Ecotourism and related sub-sectors of the tourism industry,				
	Ecotourism criteria, Environmental Effects of Ecotourism, Quebec				
	declaration on ecotourism,				
Module II	Ecotourism Resources: Identifying, listing, and understanding ecotourism	\checkmark	\checkmark	\checkmark	
6 lectures	resource categories, (natural, built, and events) Protected Areas: Definition,				
	categories and roles, Identifying and describing ecotourism products, Access				
	to resources: Challenges				
Module III	Components of ecotourism, Ecotourism and the environment, Ecotourism	\checkmark	~	\checkmark	~
6 lectures	and conservation, Ecotourism and protected areas, Ecotourism and economic				
	benefits, Effects, fiscal impacts: taxes, fees expenditure, Ecotourism and				
	social benefits, Ecotourism and local community, Revenue sharing, Effects				
	of the income distribution, Inflation, Ecotourism and education, Emphasis on				

	Slow Travel, Nature-Positive Tourism, Ephemeral Escapes, sustainable					
	tourism entrepreneurship					
Module IV	Community-based tourism, Community-based tourism management,	\checkmark	~	\checkmark		
6 lectures	Monitoring the success and impacts of community-based tourism,					
	Ecotourism practices, Transportation, Facilities (reduce, replace, reuse,					
	recycle), Services (types, activities, and code of ethics), Pro poor tourism,					
	Community-Centric Experiences, Culinary Conservation					
Module V	Best practice guidance, Certification, case studies of eco-friendly practices in	\checkmark		\checkmark	\checkmark	
5 lectures	the tourism industry, Ecotourism in the national/global context, Convention					
	on Biological Diversity, Millennium Development Goals, Ecotourism-					
	based/related employment, Scope and areas of employment, National and					
	State tourism board					
Current	Cultural preservation, local employment, and equitable benefit-sharing,				\checkmark	
Trends	Technological Advances, Impact of social media on Tourism, Educational					
2 lectures	'Back-of-House' Tours					
30	DEVEDLD BHAD					
Lectures	BERGON THID					

- Buckley, R. (2003). Case studies in ecotourism. Cambridge: CABI.
- Buckley, R. ed. (2004). Environmental impacts of ecotourism. Oxfordshire: CABI.
- Bulbeck, C. (2005). Facing the wild : ecotourism, conservation, and animal encounters. London: Earthscan.
- Ceballos-Lascurain, H. (1996). Tourism, ecotourism, and protected areas. Gland: IUCN
- Diamantis, D. (2004). Ecotourism: Management and Assessment, London: Thomson.
- Fennell, D.A. (1999). *Ecotourism: an introduction*. London: Routledge.
- Lindberg, K. and D.E. Hawkins. (eds). (1993). *Ecotourism: a guide for planners and managers*. North Benninton: The Ecotourism Society.
- Page, S.J. and R.K. Dowling. (2002). *Ecotourism*. New York: Prentice Hall.
- Wearing, S. and J. Neil. (1999). *Ecotourism: impacts, potentials, and possibilities*. Oxford:Butterworth-Heinemann.
- Weaver, D. (2001). *Ecotourism*. Milton: John Wiley & Sons
- Dr. Chitralekha Kumar (2024) Ecotourism Writers Choice Publications, Wei-Ta Fang, Arba'at Hassan, Max Horng (2023), Ecotourism, Environment, Health, and Education, Springer Publications

Course Instructor: Dr.N.D.Shrinithivihahshini

ELECTIVE 3: GREEN TECHNOLOGIES AND ENERGY MANAGEMENT COURSE CODE: 25PGEC03

Course Objectives:

- To introduce the emerging concept of green and eco-friendly technologies available in various fields ; the key players for environmental management in future.
- To impart knowledge of sustainable technologies and innovative practices that promote environmental conservation and resource efficiency, enabling students to address global environmental challenges effectively.
- To foster entrepreneurial mindsets and skills by equipping students with the tools, strategies, and ethical understanding necessary to create and manage eco-friendly businesses that drive sustainable development.

* Lecture-I	*Ti	itorial-T	' *Pr	actical-	P *	Credit-	C				L	Т	Р	(
Per Week					-		<u> </u>				3	1	0	
Course Out	comes:										1		K	Ĺ
		demonst								actices	, gre	en	K1	
	-	and their				-			-					
		develop								chnolo	gies	to	K2 &	K
-		onmental	-					-						
		acquire t			~ 11			11. 11		s, and r	nana	ge	K3, I	ζ5
		artups or			-		• •			nanta n	famo		K4,K	6
		be able 1 nd ecopr				ental, sc	cial, and	d econd	mic imj	pacts o	I gre	en	К4,К	ð
	<u> </u>	gain		1		mental	policie	s regi	ilations	and	ethic	cal	K2,K	3.F
		, applyin		•			-				• • • • • •	Jui	112,11	.,.
Knowledge			-		-			-	1	_): Si	<i>i</i> nthe	size (K
Evaluate (K				, onder	Staffallig	, (II 2),	1 cirioin	(115),	- i iliui j		<i>,</i> ~ ,	110110	5120 (
Mapping co	ourse ou	tcomes v	vith pro	gramm	e outcoi	mes	- Y	- 1	1					
	0/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	D10		
C	01	S	Μ	Μ	М	S	Μ	Μ	Μ	S		S		
	02	S	M	M	M	S	S	S	Μ	S		~ S		
	03	S	L	M	M	M	M	M	M	S		S		
	04	M	M	M	M	S	M	M	M	S		S		
	05	S	L	M	S	M	M	M	M	S		S		
	03		L					IVI	IVI	0		8		
		Strong	- ~ •		loderate		Low							
Assessment	Method	ls: Test-]	F, Semii	nar- S, A	Assignm	ent- A,	Discuss	ion- D						
					Module	es				Т	S		A	D
Module I	Emerg	ging gree	n techno	ology: A	new hor	rizon fo	r enviro	nmental	clean-u	p 🗸				V
5 lectures		duction-									1			
		ial remed												
		stration.												
		. Concep												
		acteristic		treprene	ur-Susta	inable b	ousiness	model.	Need for	or				
		eneurshi										_		
Module II		tion - Ty									\checkmark		\checkmark	
6 lectures		ogical S												
		mic and												
		enges - Pi												
		an and F												
	techno	logies-O	rganic f	arming-	organic	formul	ations, u	ırban ag	ricultur	e,	1			

	mushroom cultivation, Bee keeping ,Single cell protein ,terrace &herbal gardening, organic certification, Biofertilizer production, Nursery technology				
Module III 6 lectures	Eco-Cycle solutions - Concept, Definition, Zero Waste management- Environment friendly product design, Clean production, distribution, Consumer empowerment, Resource recovery, Producer responsibility, subsidies. Ecopreneurship in waste management –wealth from wastes - composting, vermicomposting , RDF, Earthship , paper recycling, fly ash bricks, animal feed from waste- Fermentation technique.	~	~	~	~
Module IV 6 lectures	Non renewable energy resources and climate change; renewable energy resources and sustainability; green energy technologies – solar, wind, hydro, OTEC, geothermal, biomass, biofuels- concept of waste to energy –fuel cell- hydrogen fuel -scope and opportunities. Eco-preneurship in Green energy technologies-solar technologies, Bioenergy -RDF, Bio methanation, Bio-diesel production, Fuel cell, improved chullah.	~	~	~	
Module V 5 lectures	Concept of Green Building: Sustainability and Energy Efficiency, Green buildings and sustainable ratings, designs of green buildings – resource efficiency improvements, material and energy management, waste management, LEED certification. Policies & regulation: Micro financing –evolution of MF in India. MFIs-formal-semi formal and informal-NABARD-SIDBI, Association for Sarva Seva Farms(ASSEFA), Mitrabharati, SADHAN, SEVA, Swayam Krishi Sangam, Entrepreneurship Development of India, ADB. Client characteristic microfinance services. Indian Government Business Ioan schemes MSMEs.	✓ ✓		~	~
Current Trends 2 lectures	Advances in : Recent concepts – Technological and Scientific developments – Real world cases/examples – Policy/Practice updates – Contradictions – World/Indian Scenario	7/			~
30 Lectures		1/			

- Handbook of renewable energy technologies.2011.Ahmed F Banzal(Brunel University, (UK)Ramesh C Bansal (The University of Queensland, Australia)Eds world scientific publishing Co pvt.Ltd 876P
- "Toilets that Make Compost" Low-cost, sanitary toilets that produce valuable Compost for crops in an African context by peter Morgan, Stockholm Environmental Institute 2007.
- Bauer, M.Mösle, P and Schwarz, M.2010 Green Building Guidebook for Sustainable Architecture, Springer-Verlag Berlin Heidelberg
- Designing for Zero Waste: Consumption, Technologies and the Built Environment, by Steffen Lehmann (Editor), Robert Crocker (Editor), (Earthscan Book Series on Sustainable Design) 1st Ed, Routledge Publishers, 2012
- The Zero Waste Solution: Untrashing the Planet One Community at a Time by Paul Connett Ph.D. (Author), Jeremy Irons (Foreword), Chelsea Green Publishing (October 18, 2013)
- Larson, Andrea 2000. Business Strategy and the Environment. pp. 304–317.
- McDonough, William 2002. *Cradle to Cradle: Remaking the Way We Make Things*. New York: North Point Press. pp. 27–30.
- Pastakia, A. 2002. Assessing ecopreneurship in the context of a developing country. . *Greener Management International*, 93-108.
- Yunus, *et al.*, 2006. Creating a world without poverty: Social business and the future of capitalism. New York: Public Affairs.

Course Instructor: Dr.N.D.Shrinithivihahshini

ELECTIVE 3 : CLIMATE CHANGE, MITIGATION, ADAPTATION AND RESILIENCE Course Code: 25PGEC03

Course Objectives:

- To provide an in-depth understanding of the science behind climate change.
- To analyze the impacts of climate change on ecosystems, societies, and economies.
- To explore mitigation strategies and adaptation measures to combat climate change.

* Lectu	re-L *Tutorial-T *Practical-P *Credit-C	L	Τ	P	С
Per W	eek	3	1	0	4
Course	Outcomes:]	KL
1.	Explain the scientific basis and evidence for climate change.			K1, I	K2
2.	Analyze the effects of climate change on natural and human systems.			K2, 1	K3
3.	Assess mitigation strategies for reducing greenhouse gas emissions.			K2, 1	K4
4.	Evaluate policies and global frameworks for addressing climate change.			K5, 1	K6
5.	Develop sustainable solutions and adaptation measures for resilience.			K5, 1	K6

Knowledge level: Remember (K1); Understanding (K2); Perform (K3); Analyze (K4); Synthesize (K5); Evaluate (K6)

Mapping course outcomes with programme outcomes

8							1000	1 M 1			
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	S	L	М	М	М	М	М	L	S	М
	CO2	S	М	М	М	S	М	Μ	М	S	S
	CO3	S	М	М	М	S	S	S	М	S	S
	CO4	S	L	М	S	М	М	М	М	М	S
	CO5	S	М	М	М	S	S	S	М	S	S
		Strong		Ν	Ioderat	e	Lo	w			

Strolig Woderate Low

Module I	Modules	Т	S	А	D
5 lectures	Introduction to Climate Change: Climate change vs. climate variability. Greenhouse gases: Sources, sinks, and atmospheric dynamics. Evidence of climate change: Temperature trends, sea level rise, and glacial retreat.	~		~	~
Module II 6 lectures	Impacts of Climate Change: Effects on ecosystems: Biodiversity loss, shifts in species distribution, and ecosystem services. Impacts on agriculture, water resources, and food security. Socio-economic impacts: Displacement, health risks, and economic vulnerabilities.	~			
Module III 6 lectures	Climate Change Mitigation: Carbon sequestration: Biological and geological method Renewable energy sources: Solar, wind, and bioenergy technologies. Low-carbon technologies: Energy efficiency, carbon capture, and storage. Role of afforestation and reforestation in mitigation.	~	~		~
Module IV 6 lectures	Policy and Governance: International frameworks: United Nations Framework Convention on Climate Change (UNFCCC), Kyoto Protocol, and Paris Agreement. National and regional climate policies and initiatives. Role of stakeholders: Governments, NGOs, and the private sector in mitigation efforts.	~	~		
Module V 5 lectures	Adaptation and Resilience: Adaptation strategies for agriculture, water, and coastal systems. Urban resilience: Green infrastructure and climate-smart urban planning. Indigenous knowledge and community-based adaptation approaches.	~			~
Current Trends 2 lectures	Current Contours (<i>Not for Final Exam, only for Discussion</i>) Geoengineering and its potential role in mitigating climate change. Climate finance mechanisms: Carbon markets and green bonds. Advances in climate modeling and prediction tools.				~
30 Lectures					

1. Henson, R. (2011). The rough guide to climate change (3rd ed.). Rough Guides.

2. Orr, D. W. (2011). Down to the wire: Confronting climate collapse. Oxford University Press.

3. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., et al. (Eds.). (2011). *Renewable energy sources and climate change mitigation: Special report of the Intergovernmental Panel on Climate Change*. Cambridge University Press.

4. Held, D., Nag, E.-M., & Roger, C. (2013). *Climate governance in the developing world*. Polity Press. <u>Suggested Online resources</u>

1. United Nations Climate Change (UNFCCC). Climate action and policies. https://unfccc.int

2. IPCC Reports:

Intergovernmental Panel on Climate Change (IPCC). (2023). AR6 Synthesis Report: Climate

Course Instructor: Dr.N.D.Shrinithivihahshin

25PGPP03: PRACTICAL II: MICROBIAL TECHNIQUES

Course Objectives:

- To provide hands-on training in microbiological techniques for environmental studies.
- To study the diversity and functions of microorganisms in different environmental settings.
- To develop skills for isolating, culturing, and identifying environmental microbes.

Practical Modules

- Principles and methods of sterilization, Direct microscopic observations of bacterial shape cocci, rods, chains, fungal spores, mycelium, yeast budding,
- Preparation of growth media: bacteria, fungi and actinomycetes
- Pure culture technique: Streak plate, spread plate and pour plate methods.
- Bacterial motility by hanging drop method.
- Isolation and purification of bacteria and fungi
- Staining methods: Simple, acid fast, Gram staining, spore, Capsule, Lactophenol cotton blue staining
- Isolation of bacteria from soil and water samples
- MPN test for coliforms in water samples

Course Outcomes

- Isolate, identify, and characterize microorganisms from diverse environmental and clinical samples using morphological, biochemical, and molecular methods.
- Perform and interpret microbial growth experiments, including growth curve analysis and factors affecting microbial growth.
- Apply microbiological techniques in environmental, food, medical, and industrial microbiology contexts.

LAB MANUAL RECOMMENDATIONS (OPTIONAL):

- 1. Nester, E. W., Anderson, D. G., & Roberts, C. E. (2018).*Microbiology: A Human Perspective (9th Edition)*. McGraw Hill Education.
- 2. Gunasekaran, P. (2007). *Laboratory Manual in Microbiology*. New Age International Publishers.

SEMESTER IV

CORE 11 : GLOBAL AND NATIONAL ENVIRONMENTAL ISSUES COURSE CODE: 25PGCC11 (Self Study paper)

Course Objectives:

This course introduces the three aspects of sustainability how transportation planning practices and management strategies affect these aspects. It aims to provide knowledge about current environmental and energy policies and contemporary transportation issues in India and worldwide.

	ture-L <u>*</u> Veek	Tutoria	I-T *P				t-C				L 3	T 1	Р 0	
	se Outcome	s. At the	and of t	ha cour	sa thas	tudanta	will bo	abla ta			5	I	KL	
1.	Critically Convention	assess th on on B	ne effecti iological	veness o	of intern	ational a	agreeme	ents (e.g				K1	, K6	
2.	Examine considerin	the soci	o-econom						vironme	ental iss	sues,	K2	& K	3
3.	Propose i scientific,										ting	K4	, K5	
4.	Demonstr environm											K3,	, K6	
	action.		A					10	2					
5. Know	Identify a environm water scar	ental issu city.	ues, inclu	ding cli	imate ch	ange, d	eforesta	tion, bi	odiversi	ty loss,	and		, K3, ze (H	
Know	Identify a environm	ental issu city.	ues, inclu	ding cli	imate ch	ange, d	eforesta	tion, bi	odiversi	ty loss,	and			
Know Evalu	Identify a environm water scar vledge level	ental issu city. Remer	ues, inclu nber (K1	ding cli); Unde	imate ch	ange, d g (K2);	eforesta	tion, bi	odiversi	ty loss,	and			
Know Evalu	Identify a environm water scar vledge level ate (K6)	ental issu city. Remer	ues, inclu nber (K1	ding cli); Unde	imate ch	ange, d g (K2);	eforesta	tion, bi	odiversi	ty loss,	and	thesi		
Know Evalu	Identify a environm water scar vledge level ate (K6)	ental issu city. : Remen outcome	ues, inclu nber (K1 es with pr	ding cli); Unde ogrami	imate ch rstandin me outco	ange, d g (K2); omes	eforesta Perforr	tion, bi n (K3);	odiversi	ty loss, se (K4);	and Syn	thesi		
Know Evalu	Identify a environm water scar vledge level ate (K6) bing course CO/PO	ental issu city. : Remen outcome PO1	ues, inclu nber (K1 es with pr PO2	iding cli); Unde ogrami PO3	imate ch rrstandin me outco PO4	ange, d g (K2); omes PO5	eforesta Perforr PO6	tion, bi n (K3); PO7	odiversi Analys PO8	ty loss, se (K4); PO9	and Syn PO	thesi		
Know Evalu	Identify a environm water scar vledge level ate (K6) oing course CO/PO CO1	ental issu city. : Remer outcome PO1 S	nber (K1 s with pr PO2 L	iding cli); Unde ogrami PO3 M	imate ch rrstandin me outco PO4 S	g (K2); omes PO5 M	Perform Perform PO6 M	tion, bi n (K3); PO7 M	Analys PO8 M	ty loss, se (K4); PO9 M	and Syn PO S	thesi		
Know Evalu	Identify a environm water scar vledge level ate (K6) Ding course CO/PO CO1 CO2	ental issu city. : Remer outcome PO1 S S S	nber (K1 s with pr PO2 L M	iding cli); Unde ogrami PO3 M M	imate ch rrstandin me outco PO4 S M	ange, d g (K2); omes PO5 M S	Perform Perform PO6 M M	tion, bi n (K3); PO7 M M	Analys PO8 M M	ty loss, se (K4); PO9 M S	and Syn PO S S	thesi		
Know Evalu	Identify a environm water scar vledge level ate (K6) Ding course CO/PO CO1 CO2 CO3	ental issu city. Remen outcome PO1 S S S S S	ues, inclu nber (K1 s with pr PO2 L M M	ogrami PO3 M M M	imate ch rrstandin me outco PO4 S M M M	mange, d g (K2); mes PO5 M S S S	eforesta Perforr PO6 M M S	tion, bi n (K3); PO7 M M S	Analys PO8 M M M	ty loss, se (K4); PO9 M S S S	and Syn PO S S S S	thesi		

	Modules	Т	S	А	D
Module I	Realms of Environment: Atmosphere, hydrosphere, lithosphere and	\checkmark	\checkmark	\checkmark	
5 lectures	Biosphere. Solar system, the Earths origin, age and internal constitution. Geological timescale. Overview of natural resources- Environmental problems faced by India and the world. Sustainable development-problems and perspectives.				
Module II 6 lectures	Weather and climate: climate science, thermal inversion, heat island, natural hazards: volcanoes, Earth quake, tsunami, land slide, tornadoes, storms, Hurricane and flood. Coastal erosion Air pollution:-sources and impacts, -Green house gases; global warming, acid rain, <i>ENSO:-el-Nino; la-Nina climate change: Treaties and convention-ICCC.</i>	~	~	~	

Module III	Energy Crisis: dimension of Crisis, problems faced: Solution of the	\checkmark	\checkmark	\checkmark	
6 lectures	crisis power sector reforms, policy initiatives, energy conservation,				
	CNG its advantages as a fuel. Delhi experience and controversy,				
	problems faced and future outlook, alternate fuel technologies, nuclear				
	fuel controversies- international agreements				
Module IV	Environment, Forest and wildlife: Forests in India forest cover and	\checkmark	\checkmark	\checkmark	
6 lectures	types of forests, deforestation and conservation, biodiversity, wildlife-				
	endangered and threatened species, Biosphere reserves, wet lands,				
	mangroves and coral reefs, wildlife conservation in India, Illegal trade				
	in wildlife-poaching. Recent measures for wildlife protection and				
	conservation national heritage- UNESCO's World Heritage list.				
Module V	Safety and Environment: Social construction of environmental issues-	\checkmark	\checkmark	\checkmark	\checkmark
5 lectures	anthropogenic pressure-conflicts and negotiation. Benefit-cost				
	approach to environmental problems. Institutional mode of				
	environmental planning-policy formulation and strategies-popular				
	movements and people's participation				
Current	Stagnation in International Environmental Diplomacy, Questioning the				\checkmark
Trends	Efficacy of U.N. Summits, Emphasis on Integrated Environmental				
2 lectures	Solutions, Sustainable Urban Development, Recognition of				
	Interconnected Environmental Challenges				
30					
Lectures					

- Gurdip Singh, 2005. <u>'Environmental Law in India'</u>, Macmillan India Ltd, New Delhi 2.
- BalaKrishnamoorthy, 2005. Environmental Management, Prentice Hall of India Private Limited, New Delhi.
- S.K. Agarwal, 1997. <u>Environmental Issues and themes</u>, APH Publishing Corporation, New Delhi.
- John O Neil. R. Kerry Turner and Ian J. Batemaned ed., 2001. <u>Environmental Ethics and philosophy</u>, An Elgar Reference collection, USA.
- Paul F. Ploutz (2011) Global Warming, Publisher Xlibris
- Eric Lonergan and Corinne Sawers (2022) Supercharge Me: Net Zero Faster

Course Instructor: Dr.R.Mohanraj

CORE 12 : ECOSYSTEM SERVICES AND SUSTAINABILITY Course Code: 25PGCC12

Course Objective:

•To identify the complexity and role of ecosystem and natural capital

•To understand the concepts and categories of ecosystem fabric and services

•Learning the methods to quantify the services provided by the ecosystem services

•Applying the ecosystem services for environmental sustainability and policy changes

* Lect	ure-L *Tutorial-T *Practical-P *Credit-C	L	Τ	Р	C
Per W	/eek	4	1		4
Cours	e Outcomes:			KL	
1.	Realize how critical are the ecosystem services for the sustainable livelihoo	d		K1,	K2
2.	Analyze the ecosystem changes and its implications on human sustenance			K2,	K3
3.	Quantify the ecosystem services using appropriate tools			K3,	K4
4.	Appraise the policies and programs for ecosystem conservation			K5, F	K6
5.	Evolve protocols and approaches to engage community participation in conservation	ecos	ystem	K5	

Knowledge level: Remember (K1); Understanding (K2); Perform (K3); Analyse (K4); Synthesize (K5); Evaluate (K6)

Mapping course outcomes with programme outcomes

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	L	Μ	Μ	S	Μ	Μ	Μ	S	S	
CO2	S	Μ	Μ	Μ	S	Μ	Μ	Μ	S	S	
CO3	S	S	Μ	Μ	Μ	S	S	Μ	S	Μ	
CO4	S	L	Μ	S	Μ	Μ	Μ	Μ	Μ	S	
CO5	S	L	L	Μ	S	S	Μ	Μ	Μ	S	
Strong				Moderate				Low			

Assessment Methods: Test-T, Seminar-S, Assignment-A, Discussion-D

	Modules	Т	S	Α	D
Module I	Introduction to Ecosystem and its components:	\checkmark		\checkmark	\checkmark
5 lectures	Ecosystems - Biotic and Abiotic components- Various kinds of ecosystems - productivity of Ecosystems - Limiting factors in ecosystems - Population – Structure, Meta Population theory - demography and Growth -Community structure and interrelations -Energy flow in Ecosystems -Food chain, food web -Ecological pyramids				
Module	Ecosystems Services	\checkmark			
II	Introduction - Over view of ecosystem services - Conceptual bases -				
6 lectures	Provisioning services: Food, Raw material, Fresh water and Medicinal resources - Regulatory services: Climate, Air quality, Water Management, Pollination and Biological control -Cultural services: Tourism and recreation – Global value of Ecosystem services				
Module	Assessment of Ecosystem Services	\checkmark	~		\checkmark
III 6 lectures	Quantifying and Valuing Ecosystem service – Economic/Service indicators and value framework - TEEB Ecosystem Service Valuation Database Valuing Techniques- Total Economic Value - Direct use values , Indirect use values, Non use value; Direct market valuation, Indirect market valuation, Survey based valuation - TESSA – Market based and Non market approaches – Value Transfer method – Analysis – Interpretation and Decision Making – Case Studies				

				_	
Module	Conservation of Ecosystem services	\checkmark	\checkmark		
IV	Ecosystems and sustainable human well-being – Threats to Ecosystem				
6 lectures	services – Human Impacts – Ecological foot prints - Conservation Policies				
	and Programs – Global and Regional; MDG, SDG REDD+ - Indian				
	Scenario – Environmental Protection Acts, Policies and Programs – Forest				
	and Biodiversity protection programs - Ecological sensitive areas -				
	Western Ghats and its ecologically sensitive area - India's National Action				
	Plan on Climate Change				
Module	Recent Trends in Environmentally Sustainable Management	\checkmark		\checkmark	
V	Participatory Management- PPP, Community Participation in Water				
5 lectures	Resource Management, Forest Resource Management, Energy				
	Resource Management - Sustainable Agriculture - Organic Farming -				
	Challenges in SD: Poverty, Decentralisation, Laws and Legislations,				
	Ethical Consumerism, Social Awareness.				
Current	Advances in : Recent concepts – Technological and Scientific			\checkmark	
Trends	developments – Real world cases/examples – Policy/Practice updates –				
2 lectures					
30	e no				
Lectures	S of Ruc Sp				

- Grunewald, Karsten, Bastian, Olaf (2015) Ecosystem Services Concept, Methods and Case Studies, Springer Publications
- McCarthy, D. & Morling, P. (2014) A Guidance Manual for Assessing Ecosystem Services at
- Natura 2000 Sites. RoyalSociety for the Protection of Birds: Sandy, Bedfordshire.
- UNU/IAS Report (2003) Urban Ecosystems Analysis: Identifying Tools and Methods. United Nations University Institute of Advanced Studies (UNU/IAS), 5–53–67 Jingumae, Shibuya–ku, Tokyo, 150–8304, Japan
- Rachel A. Neugarten et al (2018) Tools for measuring, modelling, and valuing ecosystem services. Publisher IUCN, Gland, Switzerland

LIST OF NON MAJOR ELECTIVE COURSES

S.No	COURSE TITLE	CI				
1.	PLASTIC POLLUTION AND ITS IMPACTS**	Dr.R.Mohanraj				
2.	ENVIRONMENTAL STUDIES FOR COMPETITIVE EXAMS	Dr.N.D.Shrinithivihahshini				
3.	BIODIVERSITY STUDIES: WALKS IN THE CAMPUS**	Dr.N.D.Shrinithivihahshini				
4.	CLIMATE CHANGE AND ITS IMPACTS**	Dr.R.Mohanraj				
5.	MOBILE APPS AND OPEN SOURCE TECHNOLOGY FOR GEO ENVIRONMENTAL STUDIES	Dr.M.Prashanthi Devi				
6.	GEOAI AND IOT FOR SUSTAINABLE ENVIRONMENT AND INFRASTRUCTURE**	Dr.M.Prashanthi Devi				
4	** Post Approval					

LIST OF VALUE ADDED COURSES

S.No	COURSE TITLE	CI				
1.	GREEN AUDIT **	Dr.R.Mohanraj				
2.	ORGANIC FARMING	Dr.N.D.Shrinithivihahshini				
3.	TERRACE GARDENING/ ADVANCES IN CONTAINER Dr.N.D.Shrinithivihahsh GARDENING					
4.	RURBANISATION: CONCEPTS FOR SUSTAINABLE LIVING**	Dr.M.Prashanthi Devi				
5.	5. CARBON FOOTPRINT ASSESSMENT Dr.N.D.Shrinit					
** Post Approva						