DNA SEQUENCING

Prof. Narkunaraja Shanmugam
Dept. Of Biomedical Science
School of Basic Medical Sciences
Bharathidasan University
In mid 1970

- Cloning was rapidly improving
- Prof. S. Cohen in Stanford was one of the pioneer in improving this method.
- He was using Bac. Genetic to clone genes from bacteria but same time they wanted to see the nucleotide sequence of DNA.
- First nucleotide sequencing technique was developed by Robert Holley’s lab group.
- They were the one first sequenced tRNA_{Ala}
Holley’s group

- Purified tRNA$^{\text{Ala}}$ was digested with various RNases like RNase A, T2, U etc.
- Digested tRNA$^{\text{Ala}}$ fragments were 5’ end labeled and separated either 2-D homochromatography or ion exchange (DEAE cellulose) column chromatography.
- Fragments were then digested with nuclease to make mononucleotide. 5’end labelled mononucleotide was analyzed by TLC.
Holley’s methods

5’ A T2 U A+T2 A+U 3’ RNA

DEAE column (ion exchange)

Separated fragments were 5’ end labeled with 32P then digested with nuclease and analyzed by TLC.
Same type of method was tried to attempt for DNA sequencing by cleaving DNA into small fragment with “endonuclease IV or chemical like pyrimidine.
Second type of method was transcribe “the DNA fragment” into RNA by E.coli RNA pol then go for Holley method.
In late 1970 there were two groups developed 2 different methods of DNA sequencing:

- W. Gilbert in Harvard University, USA.
DNA SEQUENCING

• Sanger’s lab used enzymes for synthesis
• Gilbert’s lab used chemical for degradation.

both method has its own cons and pros...

but generally Sanger’s method is widely used b’coz it is relatively easy compare to Gilbert’s methods.
The method is based on the interruption by nucleotide analogues (di-deoxy nucleotide) of enzymatic synthesis of a second strand of DNA complementary to the template DNA.

A mixture of different length fragments is produced depending where the interruptions occurred.

The mixture of fragments is run on a sequencing gel (8%-7M urea PAGE) and the sequence read off.
1. Before the DNA can be sequenced, it has to be denatured into single strands using heat or NaOH or cloned into M13 plasmid to make single strand DNA.

2. Next a primer (complementary to portion of template) is annealed to one of the template strands. This primer is specifically constructed so that its 3' end is located next to the DNA sequence of interest.

3. Either this primer or one of the nucleotides should be radioactively or fluorescently labeled so that the final product can be detected on a gel.

4. Once the primer is attached to the DNA, the solution is divided into four tubes labeled "G", "A", "T" and "C". Then reagents are added to these samples as follows:

 - **"G" tube:** all four dNTP's, ddGTP (1/100th) and DNA polymerase
 - **"A" tube:** all four dNTP's, ddATP (1/100th) and DNA polymerase
 - **"T" tube:** all four dNTP's, ddTTP (1/100th) and DNA polymerase
 - **"C" tube:** all four dNTP's, ddCTP (1/100th) and DNA polymerase

5. As the DNA is synthesized, nucleotides are added on to the growing chain by the DNA polymerase. However, on occasion a dideoxynucleotide is incorporated into the chain in place of a normal nucleotide, which results in a chain-terminating event.
DNA SEQUENCING

(a) DNA polymerase + dNTPs (100 μM)

- Dideoxy A (1 μM)
- Dideoxy G (1 μM)
- Dideoxy T (1 μM)
- Dideoxy C (1 μM)

5' → 3'

Denature and separate by electrophoresis

(b) DNA polymerase
+ dATP, dGTP, dCTP, dTTP
+ ddGTP in low concentration

5' 32P-TAGCTGACTC 3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

5' 32P-TAGCTGACTCAG 3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

5' 32P-TAGCTGACTCATGTTCTT 3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

5' 32P-TAGCTGACTCATGTTCTTGATACCCG 3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...
DNA SEQUENCING

SANGER’s Dideoxy chain termination method

- Sanger’s technique is "controlled DNA polymerase activity to **generate** different size of DNA length as little as one nucleotide in a set of independent, nucleotide specific reactions"

Primer – 10nt
2\(^{nd}\) fragment is primer+1nt
3\(^{rd}\) fragment is primer +2nt
An enzyme that can synthesize a new DNA strand on a template strand (replication). Any enzyme involved in DNA repair or both is called DNA pol. Both prokary- Eukaryotic DNA pol share the same fundamental synthetic activity.

DNA pol enzymes involved in two type of functions
– Replication call DNA replicases
– DNA repair
• Mole. Wt of DNA pol I – 103kDa
• Proteolytic cleave yields two fragments
 – N-terminal 35kDa (1/3) fragments which contains 3’-5’ exonuclease activity.
 – C-terminal 68kDa (2/3) fragments called Klenow fragments
DNA Pol I Polymerase activity

Klenow enzyme

ACTGCGTACGTCCGTGACGTGATCGACGTGCAACCGGTTAGCTTGACGCATGCAGGCACTGCACTAGCTGCACGTTGGCCAATCGA

DNA Pol I 5'→ 3' exonuclease activity

DNA Pol

ACTGCGTACGTCCGTGACGTGATCGACGTGCAACCGGTTAGCTTGACGCATGCAGGCACTGCACTAGCTGCACGTTGGCCAATCGA

DNA Pol
Because of 5′-3′ exonuclease activity daughter strand is going to different size this will not give DNA fragments.
3’→5’ exonuclease will ruin the sequencing reaction.

DNA Pol I 3’→ 5’ exonuclease activity

5’-32P-TAGCTGACTCAddG*-3’

3’→5’ exonuclease

5’-32P-TAGCTGACTCA-3’
ddG*

3’→ 5’ exonuclease sense incorporated ddNMP is not correct nucleotide
So it removes this ddNMP as proof reading effect.
Mechanism of DNA chain formation

Klenow enzyme

Deoxy-Nucleotide
Making Single strand DNA template

M-13 → primer

pUC-18 → NaOH
Heat → pUC-18

32p
Making Single strand DNA template

ATGACGCATGCAGGCAAGCG
TACTGCGTA
ACGTCCGTTTCGC
Replicative Form
RF
Making Single strand DNA template

ATGACGCATGCAGGCAAGCG
TACTGCGTA
ACGTCCGTTTCGC
Replicative Form
RF
Making Single strand DNA template

ATGACGCATGCAGGCAAGCG
TACTGCGTA
ACGTCCGTTTCGC
Replicative Form
RF
Making Single strand DNA template
Making Single strand DNA template

RF of M13_{mp9}

SS form of M13_{mp9}
Primer base pair (hybridize or binding) with its complementary region in plasmid.

Primer is a short DNA nucleotide sequence called oligonucleotides simply called “Oligo”

Base pairing primer with plasmid will make single strand plasmid DNA into double strand region where DNA polymerase can bind and can able to synthesis new DNA strand which is complementary to its lagging strand.
4 separate reactions

M13
Mechanism of DNA sequencing by Sanger’s Method

Primer base pair (hybridize or binding) with its complementary region in plasmid.

Primer is a short DNA nucleotide sequence called oligonucleotides simply called “Oligo”

Base pairing primer with plasmid will make single strand plasmid DNA into double strand region where DNA polymerase can bind and can able to synthesis new DNA strand which is complementary to its lagging strand.
4 separate reactions

M13
When DNA polymerase or sequenase encounter dideoxyribonucleotide (ddNTPs) New DNA synthesis cannot happened because of lack of 3’OH moiety in ddNTP
Tube-G

ACTGCGTACGTCGTTACTGCGTACGTCGTCGTACGTGATCGACGTGCAACCGGTTAG
TGACGCATGCAGGCA TG_dd

ACTGCGTACGTCGTTACTGCGTACGTCGTCGTACGTGATCGACGTGCAACCGGTTAG
TGACGCATGCAGGCA TGACG_dd

ACTGCGTACGTCGTTACTGCGTACGTCGTCGTACGTGATCGACGTGCAACCGGTTAG
TGACGCATGCAGGCA TGACG_dd

ACTGCGTACGTCGTTACTGCGTACGTCGTCGTACGTGATCGACGTGCAACCGGTTAG
TGACGCATGCAGGCA TGACG_dd
Tube-T

Sanger’s Method: Molecular Mechanism
Tube-C

ACTGCGTACGTCCGTACTGCGTACGTCCGTGACGTGATCGACGTGCAACCGGTTAGCTGACGCATGCAGGCA T GAC\textsubscript{dd}

ACTGCGTACGTCCGTACTGCGTACGTCCGTGACGTGATCGACGTGCAACCGGTTAGTGACGCATGCGGCA TGACG\textsubscript{dd}

ACTGCGTACGTCCGTACTGCGTACGTCCGTGACGTGATCGACGTGCAACCGGTTAGTAACGCATGCGGCA TGACG\textsubscript{dd}

ACTGCGTACGTCCGTACTGCGTACGTCCGTGACGTGATCGACGTGCAACCGGTTAGTAACGCATGCGGCA TGACG\textsubscript{dd}

ACTGCGTACGTCCGTACTGCGTACGTCCGTGACGTGATCGACGTGCAACCGGTTAGTAACGCATGCGGCA TGACG\textsubscript{dd}

ACTGCGTACGTCCGTACTGCGTACGTCCGTGACGTGATCGACGTGCAACCGGTTAGTAACGCATGCGGCA TGACG\textsubscript{dd}
Mechanism of DNA chain formation

DNA polymerase

Deoxy-Nucleotide
Phosphodiester bond

Sanger’s Method: Molecular Mechanism

dideoxynucleotide Can not react

Terminated ddNTP

Juang RH (2004) BCbasics
Sanger’s Method: How Synthesized

di-deoxynucleotide

Can not react

Juang RH (2004) BCbasics
Mechanism of DNA chain formation

Deoxy-Nucleotide

DNA polymerase
Mechanism of Dideoxy chain termination

Di-deoxy-Nucleotide

DNA polymerase
Sanger’s Method: How Terminated

Phosphodiester bond

5’

3’

H

Normal Linking

dideoxynucleotide

Can not react

ddNTP

5’

3’

A

Juang RH (2004) BCbasics
How DNA Sequence Is Determined?
How DNA Sequence Is Determined?

If you load all the sequence reaction In one lane, you cannot determine the sequence of the DNA.
Gel electrophoresis techniques for separating DNA molecules by size.
How DNA Sequence Is Determined?

DNA fragments having a difference of one nucleotide can be separated on gel electrophoresis.

But these bands can’t tell us the identity of the terminal nucleotides.

Polyacrylamide Gel Electrophoresis

If those band with the same terminal nucleotide can be grouped, then it is possible to read the whole sequence.

Juang RH (2004) BCbasics
How DNA Sequence Is Determined?

Polyacrylamide Gel Electrophoresis

Reading sequence from Autoradiogram by manually
Line up all four reactions, and you can "read" the sequence ladder 5' to 3' as TCCTAAG...etc. in this example.
MAXAM-GILBERT SEQUENCING

- A method of DNA sequencing, based on the “controlled degradation of a DNA fragment in a set of independent, nucleotide specific reactions”

- The resulting fragments have characteristic sizes depending on the sequence of the template, that can be resolved on a sequencing gel.

- Although no longer the main protocol, Maxam Gilbert sequencing still has advantages, for example: oligonucleotides or covalently modified DNA sequencing.

- This chemical cleavage method uses double-stranded DNA samples and so does not require cloning of DNA into an M13 phage vector to produce single-stranded DNA as is the case with the Sanger-Coulson method. It involves modification of the bases in DNA followed by chemical base-specific cleavage.
Maxam-Gilbert's Method:

Specific Reaction to G

- Chemical method
 - ATCGATCG
 - ATCG
 - AT

- Non-radioactive (invisible)
 - AT

Sanger's Method:

Biosynthetic method

- Analogue
 - A, T, C, G

- Template
 - ATCG
 - TAGCTAGCTA

- Keep on going

- Producing various fragments
 - ATCG
 - TAGCTAGCTA

- Terminated

Juang RH (2004) BCbasics
1) Double-stranded (Ds) DNA to be sequenced is labelled by attaching a radioactive phosphorus \((^{32}\text{P})\) group to the 5' end.

2) Using dimethyl sulphoxide (DMSO) and heating to 90°C, the two strands of the DNA are separated and purified (e.g. using gel electrophoresis and the principle that one of the strands is likely to be heavier than the other due to the fact that it contains more purine nucleotides (A and G) than pyrimidines (C and T) which are lighter).

3) Single-stranded sample is split into separate samples and each is treated with one of the cleavage reagents.

 This part of the process involves alteration of bases (e.g. dimethylsulphate methylates guanine) followed by removal of altered bases.

 Lastly, piperidine is used for cleavage of the strand at the points where bases are missing.
Chemicals used in Maxam-Gilbert method

<table>
<thead>
<tr>
<th>alteration</th>
<th>base removal</th>
<th>cleavage</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>DMSO</td>
<td>Piperidine</td>
</tr>
<tr>
<td>A+G</td>
<td>Acid</td>
<td>Acid</td>
</tr>
<tr>
<td>C+T</td>
<td>Hydrazine</td>
<td>Piperidine</td>
</tr>
<tr>
<td>C</td>
<td>Hydrazine + 1.5M NaCl</td>
<td>Piperidine</td>
</tr>
<tr>
<td>A>C</td>
<td>1.2N NaOH</td>
<td>Piperidine</td>
</tr>
</tbody>
</table>

Methylation of N7 with \textbf{DMSO} (dimethyl sulfate or sulfoxide) make C8-C9 bond specifically susceptible to cleavage.

Piperidine formate weakens the glycosidic bond of purines by protonating N atoms.

Hydrazine splits the pyrimidine rings.

In the presence of 1.5M NaCl only cytosine reacts with hydrazine.

1.2N NaOH at 90oC result in strong cleavage at adenine and weaker cleavage at cytosine.
Heat at 90-100°C or DMSO

Restriction enzyme (RE) digestion

6-8% 7M urea PAGE
Advantage of Maxam-Gilbert Method

- Short DNAs like oligonucleotides can be sequenced
- DNAs that form secondary structure can be sequenced
DNA SEQUENCING

Comparison

- Sanger’s method
 - Additional cloning was needed to make ssDNA (time consuming)
 - Primers need to be synthesized
 - 2° structures give problems
 - Short oligonucleotides cannot be sequenced

- Maxam-Gilbert method
 - No additional cloning needed
 - No primer involved
 - No 2° structures problems
 - Short oligos can be sequenced by this method
Cycle (PCR) sequencing

- Same Sanger’s method used, but PCR was used to perform the reactions.
- PCR has three steps
 - 1. denaturing
 - 2. annealing
 - 3. elongation or synthesis

DNA SEQUENCING

95°C (denaturing) → 55°C (annealing) → 72°C (elongation)
Automated sequence

Template DNA pol.

dATP, dCTP, dTTP, dGTP

ddGTP-fluorescence dye (different dye for different ddNTPs)

primer

5’-TAGCTGACTC-3’

3’-ATCGACTGAGTCAAGAACTATTGGGCTTAA-5’

DNA SEQUENCING

5’-TAGCTGACTCADdG*-3’

3’-ATCGACTGAGTCAAGAACTATTGGGCTTAA-5’

5’-TAGCTGACTCAC G TTCTTdG*-3’

3’-ATCGACTGAGTCAAGAACTATTGGGCTTAA-5’

5’-TAGCTGACTCAG TTCTGATAACCCddG*-3’

3’-ATCGACTGAGTCAAGAACTATTGGGCTTAA-5’
How DNA Sequence Is Determined?

Automated DNA sequencing
Unlike other methods, all the four reactions are loaded on one well (capillary gel). At the end, dye was excited by laser light and fluorescence was detected.
SEQUENCING LARGE MOLECULES OF DNA

- Both the Maxam-Gilbert and Sanger-Coulson methods can only produce about 300-500 bases of sequence at a time.

 Most genes are larger than this. To sequence a large DNA molecule it is cut up into different fragments and each fragment is sequenced in turn, including overlaps.

 The full sequence can then be determined.
Two methods

Primer walk

Restriction enzymes (RE) map.

Primer walk
RE Mapping

BamHI
4kb 6kb

EcoRI
1.5kb 5kb 3.5kb

HindIII
5.5kb 3.5kb 1kb

DNA SEQUENCING
New sequencing methods

- human genome is about 3 billion (3,000,000,000) bp long.
- if the average fragment length is 500 bases, it would take a minimum of six million to sequence the human genome (1-fold coverage)
Major landmarks in DNA sequencing

- **1953** Discovery of the structure of the DNA double helix.
- **1972** Development of recombinant DNA technology, which permits isolation of defined fragments of DNA; prior to this, the only accessible samples for sequencing were from bacteriophage or virus DNA.
- **1975** The first complete DNA genome to be sequenced is bacteriophage φX174
- **1977**
 - Allan Maxam and Walter Gilbert publish "DNA sequencing by chemical degradation".
 - Fred Sanger, independently, publishes "DNA sequencing by enzymatic synthesis".
- **1980** Fred Sanger and Wally Gilbert receive the Nobel Prize in Chemistry
- **1982** Genbank starts as a public repository of DNA sequences.
• **1984** Medical Research Council scientists decipher the complete DNA sequence of the Epstein-Barr virus, 170 kb.

• **1985** Kary Mullis and colleagues develop the polymerase chain reaction, a technique to replicate small fragments of DNA.

• **1986** Leroy E. Hood's laboratory at the Cal Tech and Smith announce the first semi-automated DNA sequencing machine.

• **1987** Applied Biosystems markets first automated sequencing machine, the model ABI 370.

• **1990** The U.S. National Institutes of Health begins large-scale sequencing trials on
 - *Mycoplasma capricolum*,
 - *Escherichia coli*,
 - *Caenorhabditis elegans*, and
 - *Saccharomyces cerevisiae*.

 — Barry Karger, Lloyd Smith and Norman Dovichi publish on capillary electrophoresis.

• **1991** Craig Venter develops strategy to find expressed genes with ESTs (Expressed Sequence Tags).
DNA SEQUENCING

1995 Venter, Fraser and Smith publish first sequence of free-living organism, *Haemophilus influenzae* (genome size of 1.8 Mb).
- Richard Mathies et al. publish on sequencing dyes (PNAS, May)
- Michael Reeve and Carl Fuller, thermostable polymerase for sequencing

• 1996 International Human Genome Project partners agree to release sequence data into public databases within 24 hours.

• 1997 Blattner, Plunkett et al. publish the sequence of E. coli (genome size of 5 Mb)

• 1999 NIH moves up completion date for rough draft, to spring 2000.
 - NIH launches the mouse genome sequencing project.
 - First sequence of human chromosome 22 published.

• 2000 Celera and collaborators sequence fruit fly *Drosophila melanogaster* (genome size of 180Mb)
• HGP consortium publishes sequence of chromosome 21.
• HGP & Celera jointly announce working drafts of HG sequence, promise joint publication.
 – Estimates for the number of genes in the human genome range from 35,000 to 120,000.

• **2001** HGP consortium publishes Human Genome Sequence draft in Nature (15 Feb)
 – Celera publishes the Human Genome sequence

• **2007** For the first time, a set of closely related species (12 Drosophilidae) are sequenced, launching the era of *phylogenomics*.
 – Craig Venter publishes his full diploid genome: the first human genome to be sequenced completely.

• **2008** An international consortium launches *The 1000 Genomes Project*, aimed to study human genetic variability.
• **2008** Leiden University Medical Center scientists decipher the first complete DNA sequence of a woman.
The End

Prof. Narkunaraja Shanmugam
Dept. Of Biomedical Science
School of Basic Medical Sciences
Bharathidasan University